抗体序列数据库。

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-12-18 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae171
Simon Malesys, Rachel Torchet, Bertrand Saunier, Nicolas Maillet
{"title":"抗体序列数据库。","authors":"Simon Malesys, Rachel Torchet, Bertrand Saunier, Nicolas Maillet","doi":"10.1093/nargab/lqae171","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies play a crucial role in the humoral immune response against health threats, such as viral infections. Although the theoretical number of human immunoglobulins is well over a trillion, the total number of unique antibody protein sequences accessible in databases is much lower than the number found in a single individual. Training AI (Artificial Intelligence) models, for example to assist in developing serodiagnoses or antibody-based therapies, requires building datasets according to strict criteria to include as many standardized antibody sequences as possible. However, the available sequences are scattered across partially redundant databases, making it difficult to compile them into single non-redundant datasets. Here, we introduce ABSD (AntiBody Sequence Database, https://absd.pasteur.cloud), which contains data from major publicly available resources, creating the largest standardized, automatically updated and non-redundant source of public antibody sequences. This user-friendly and open website enables users to generate lists of antibodies based on selected criteria and download the unique sequence pairs of their variable regions.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae171"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655285/pdf/","citationCount":"0","resultStr":"{\"title\":\"AntiBody Sequence Database.\",\"authors\":\"Simon Malesys, Rachel Torchet, Bertrand Saunier, Nicolas Maillet\",\"doi\":\"10.1093/nargab/lqae171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibodies play a crucial role in the humoral immune response against health threats, such as viral infections. Although the theoretical number of human immunoglobulins is well over a trillion, the total number of unique antibody protein sequences accessible in databases is much lower than the number found in a single individual. Training AI (Artificial Intelligence) models, for example to assist in developing serodiagnoses or antibody-based therapies, requires building datasets according to strict criteria to include as many standardized antibody sequences as possible. However, the available sequences are scattered across partially redundant databases, making it difficult to compile them into single non-redundant datasets. Here, we introduce ABSD (AntiBody Sequence Database, https://absd.pasteur.cloud), which contains data from major publicly available resources, creating the largest standardized, automatically updated and non-redundant source of public antibody sequences. This user-friendly and open website enables users to generate lists of antibodies based on selected criteria and download the unique sequence pairs of their variable regions.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 4\",\"pages\":\"lqae171\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

抗体在体液免疫反应中起着至关重要的作用,以对抗健康威胁,如病毒感染。尽管人类免疫球蛋白的理论数量远远超过一万亿,但数据库中可访问的独特抗体蛋白序列的总数远低于单个个体的数量。训练AI(人工智能)模型,例如协助开发血清诊断或基于抗体的疗法,需要根据严格的标准构建数据集,以包括尽可能多的标准化抗体序列。然而,可用的序列分散在部分冗余的数据库中,这使得将它们编译成单个非冗余数据集变得困难。在这里,我们介绍ABSD (AntiBody Sequence Database, https://absd.pasteur.cloud),它包含了来自主要公共资源的数据,创建了最大的标准化,自动更新和无冗余的公共抗体序列来源。这个用户友好且开放的网站使用户能够根据选定的标准生成抗体列表,并下载其可变区域的唯一序列对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AntiBody Sequence Database.

Antibodies play a crucial role in the humoral immune response against health threats, such as viral infections. Although the theoretical number of human immunoglobulins is well over a trillion, the total number of unique antibody protein sequences accessible in databases is much lower than the number found in a single individual. Training AI (Artificial Intelligence) models, for example to assist in developing serodiagnoses or antibody-based therapies, requires building datasets according to strict criteria to include as many standardized antibody sequences as possible. However, the available sequences are scattered across partially redundant databases, making it difficult to compile them into single non-redundant datasets. Here, we introduce ABSD (AntiBody Sequence Database, https://absd.pasteur.cloud), which contains data from major publicly available resources, creating the largest standardized, automatically updated and non-redundant source of public antibody sequences. This user-friendly and open website enables users to generate lists of antibodies based on selected criteria and download the unique sequence pairs of their variable regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
LoVis4u: a locus visualization tool for comparative genomics and coverage profiles. Comprehensive analysis of RNA-chromatin, RNA-, and DNA-protein interactions. Halfpipe: a tool for analyzing metabolic labeling RNA-seq data to quantify RNA half-lives. Current state and future prospects of Horizontal Gene Transfer detection. Advancing personalized cancer therapy: Onko_DrugCombScreen-a novel Shiny app for precision drug combination screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1