{"title":"减少与相干衍射成像中丢失数据相关的伪影。","authors":"Erik Malm, Yuriy Chushkin","doi":"10.1107/S1600577524010956","DOIUrl":null,"url":null,"abstract":"<p><p>Coherent diffractive imaging experiments often collect incomplete datasets containing regions that lack any measurements. These regions can arise because of beamstops, gaps between detectors, or, in tomography experiments, a missing wedge of data due to a limited sample rotation range. We describe practical and effective approaches to mitigate reconstruction artifacts by bringing uniqueness back to the phase retrieval problem. This is accomplished by looking for a solution that both matches the data and has minimum total variation, which essentially sets the unconstrained modes to reduce oscillations within the reconstruction. Two algorithms are described. The first algorithm assumes that there is an accurate estimate of the phase and can be used for pre- and post-processing. The second algorithm attempts to simultaneously minimize the total variation and recover the phase. We demonstrate the utility of these algorithms with numerical simulations and, experimentally, on a large, three-dimensional dataset.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"210-216"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708845/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reduction of artifacts associated with missing data in coherent diffractive imaging.\",\"authors\":\"Erik Malm, Yuriy Chushkin\",\"doi\":\"10.1107/S1600577524010956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coherent diffractive imaging experiments often collect incomplete datasets containing regions that lack any measurements. These regions can arise because of beamstops, gaps between detectors, or, in tomography experiments, a missing wedge of data due to a limited sample rotation range. We describe practical and effective approaches to mitigate reconstruction artifacts by bringing uniqueness back to the phase retrieval problem. This is accomplished by looking for a solution that both matches the data and has minimum total variation, which essentially sets the unconstrained modes to reduce oscillations within the reconstruction. Two algorithms are described. The first algorithm assumes that there is an accurate estimate of the phase and can be used for pre- and post-processing. The second algorithm attempts to simultaneously minimize the total variation and recover the phase. We demonstrate the utility of these algorithms with numerical simulations and, experimentally, on a large, three-dimensional dataset.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"210-216\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524010956\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524010956","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduction of artifacts associated with missing data in coherent diffractive imaging.
Coherent diffractive imaging experiments often collect incomplete datasets containing regions that lack any measurements. These regions can arise because of beamstops, gaps between detectors, or, in tomography experiments, a missing wedge of data due to a limited sample rotation range. We describe practical and effective approaches to mitigate reconstruction artifacts by bringing uniqueness back to the phase retrieval problem. This is accomplished by looking for a solution that both matches the data and has minimum total variation, which essentially sets the unconstrained modes to reduce oscillations within the reconstruction. Two algorithms are described. The first algorithm assumes that there is an accurate estimate of the phase and can be used for pre- and post-processing. The second algorithm attempts to simultaneously minimize the total variation and recover the phase. We demonstrate the utility of these algorithms with numerical simulations and, experimentally, on a large, three-dimensional dataset.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.