联邦入侵检测系统综合调查:技术、挑战和解决方案

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Science Review Pub Date : 2024-12-20 DOI:10.1016/j.cosrev.2024.100717
Ioannis Makris, Aikaterini Karampasi, Panagiotis Radoglou-Grammatikis, Nikolaos Episkopos, Eider Iturbe, Erkuden Rios, Nikos Piperigkos, Aris Lalos, Christos Xenakis, Thomas Lagkas, Vasileios Argyriou, Panagiotis Sarigiannidis
{"title":"联邦入侵检测系统综合调查:技术、挑战和解决方案","authors":"Ioannis Makris, Aikaterini Karampasi, Panagiotis Radoglou-Grammatikis, Nikolaos Episkopos, Eider Iturbe, Erkuden Rios, Nikos Piperigkos, Aris Lalos, Christos Xenakis, Thomas Lagkas, Vasileios Argyriou, Panagiotis Sarigiannidis","doi":"10.1016/j.cosrev.2024.100717","DOIUrl":null,"url":null,"abstract":"Cyberattacks have increased radically over the last years, while the exploitation of Artificial Intelligence (AI) leads to the implementation of even smarter attacks which subsequently require solutions that will efficiently confront them. This need is indulged by incorporating Federated Intrusion Detection Systems (FIDS), which have been widely employed in multiple scenarios involving communication in cyber–physical systems. These include, but are not limited to, the Internet of Things (IoT) devices, Industrial IoT (IIoT), healthcare systems (Internet of Medical Things/IoMT), Internet of Vehicles (IoV), Smart Manufacturing (SM), Supervisory Control and Data Acquisition (SCADA) systems, Multi-access Edge Computing (MEC) devices, among others. Tackling the challenge of cyberthreats in all the aforementioned scenarios is of utmost importance for assuring the safety and continuous functionality of the operations, crucial for maintaining proper procedures in all Critical Infrastructures (CIs). For this purpose, pertinent knowledge of the current status in state-of-the-art (SOTA) federated intrusion detection methods is mandatory, towards encompassing while simultaneously evolving them in order to timely detect and mitigate cyberattack incidents. In this study, we address this challenge and provide the readers with an overview of FL implementations regarding Intrusion Detection in several CIs. Additionally, the distinct communication protocols, attack types and datasets utilized are thoroughly discussed. Finally, the latest Machine Learning (ML) and Deep Learning (DL) frameworks and libraries to implement such methods are also provided.","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"24 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive survey of Federated Intrusion Detection Systems: Techniques, challenges and solutions\",\"authors\":\"Ioannis Makris, Aikaterini Karampasi, Panagiotis Radoglou-Grammatikis, Nikolaos Episkopos, Eider Iturbe, Erkuden Rios, Nikos Piperigkos, Aris Lalos, Christos Xenakis, Thomas Lagkas, Vasileios Argyriou, Panagiotis Sarigiannidis\",\"doi\":\"10.1016/j.cosrev.2024.100717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyberattacks have increased radically over the last years, while the exploitation of Artificial Intelligence (AI) leads to the implementation of even smarter attacks which subsequently require solutions that will efficiently confront them. This need is indulged by incorporating Federated Intrusion Detection Systems (FIDS), which have been widely employed in multiple scenarios involving communication in cyber–physical systems. These include, but are not limited to, the Internet of Things (IoT) devices, Industrial IoT (IIoT), healthcare systems (Internet of Medical Things/IoMT), Internet of Vehicles (IoV), Smart Manufacturing (SM), Supervisory Control and Data Acquisition (SCADA) systems, Multi-access Edge Computing (MEC) devices, among others. Tackling the challenge of cyberthreats in all the aforementioned scenarios is of utmost importance for assuring the safety and continuous functionality of the operations, crucial for maintaining proper procedures in all Critical Infrastructures (CIs). For this purpose, pertinent knowledge of the current status in state-of-the-art (SOTA) federated intrusion detection methods is mandatory, towards encompassing while simultaneously evolving them in order to timely detect and mitigate cyberattack incidents. In this study, we address this challenge and provide the readers with an overview of FL implementations regarding Intrusion Detection in several CIs. Additionally, the distinct communication protocols, attack types and datasets utilized are thoroughly discussed. Finally, the latest Machine Learning (ML) and Deep Learning (DL) frameworks and libraries to implement such methods are also provided.\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cosrev.2024.100717\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.cosrev.2024.100717","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

网络攻击在过去几年中急剧增加,而人工智能(AI)的利用导致实施更智能的攻击,随后需要有效应对这些攻击的解决方案。联邦入侵检测系统(FIDS)已被广泛应用于涉及网络物理系统通信的多种场景,满足了这一需求。这些包括但不限于物联网(IoT)设备、工业物联网(IIoT)、医疗保健系统(医疗物联网/IoMT)、车联网(IoV)、智能制造(SM)、监控和数据采集(SCADA)系统、多接入边缘计算(MEC)设备等。应对上述所有情况下的网络威胁挑战对于确保运营的安全和持续功能至关重要,对于维护所有关键基础设施(ci)的适当程序至关重要。为此,必须了解最先进的(SOTA)联邦入侵检测方法的当前状态,以涵盖并同时发展它们,以便及时检测和减轻网络攻击事件。在本研究中,我们解决了这一挑战,并为读者提供了几个ci中有关入侵检测的FL实现的概述。此外,还深入讨论了不同的通信协议、攻击类型和使用的数据集。最后,还提供了实现这些方法的最新机器学习(ML)和深度学习(DL)框架和库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive survey of Federated Intrusion Detection Systems: Techniques, challenges and solutions
Cyberattacks have increased radically over the last years, while the exploitation of Artificial Intelligence (AI) leads to the implementation of even smarter attacks which subsequently require solutions that will efficiently confront them. This need is indulged by incorporating Federated Intrusion Detection Systems (FIDS), which have been widely employed in multiple scenarios involving communication in cyber–physical systems. These include, but are not limited to, the Internet of Things (IoT) devices, Industrial IoT (IIoT), healthcare systems (Internet of Medical Things/IoMT), Internet of Vehicles (IoV), Smart Manufacturing (SM), Supervisory Control and Data Acquisition (SCADA) systems, Multi-access Edge Computing (MEC) devices, among others. Tackling the challenge of cyberthreats in all the aforementioned scenarios is of utmost importance for assuring the safety and continuous functionality of the operations, crucial for maintaining proper procedures in all Critical Infrastructures (CIs). For this purpose, pertinent knowledge of the current status in state-of-the-art (SOTA) federated intrusion detection methods is mandatory, towards encompassing while simultaneously evolving them in order to timely detect and mitigate cyberattack incidents. In this study, we address this challenge and provide the readers with an overview of FL implementations regarding Intrusion Detection in several CIs. Additionally, the distinct communication protocols, attack types and datasets utilized are thoroughly discussed. Finally, the latest Machine Learning (ML) and Deep Learning (DL) frameworks and libraries to implement such methods are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
期刊最新文献
Machine learning in automated diagnosis of autism spectrum disorder: a comprehensive review WebAssembly and security: A review Advancing smart transportation: A review of computer vision and photogrammetry in learning-based dimensional road pavement defect detection Artificial hummingbird algorithm: Theory, variants, analysis, applications, and performance evaluation A systematic review on cover selection methods for steganography: Trend analysis, novel classification and analysis of the elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1