为绘制人口密集地区滑坡危害图而进行沟槽调查,以量化泥石流活动:挪威南部戈尔的经验教训

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Processes and Landforms Pub Date : 2024-11-15 DOI:10.1002/esp.6028
Raymond S. Eilertsen, Kari Sletten, Gro Sandøy, Reginald Hermanns, Anders Romundset, Lena Rubensdotter
{"title":"为绘制人口密集地区滑坡危害图而进行沟槽调查,以量化泥石流活动:挪威南部戈尔的经验教训","authors":"Raymond S. Eilertsen,&nbsp;Kari Sletten,&nbsp;Gro Sandøy,&nbsp;Reginald Hermanns,&nbsp;Anders Romundset,&nbsp;Lena Rubensdotter","doi":"10.1002/esp.6028","DOIUrl":null,"url":null,"abstract":"<p>We here describe the results of stratigraphic and sedimentological examinations of debris flow deposits at Breidokk, Gol, southern Norway. The deposits are situated at the valley floor, below a steep slope with three large and several smaller debris flow channels incised into the thick till cover. The study area is populated and with abundant infrastructure such as roads, public and private buildings and other types of infrastructure, including underground water pipes and cables. Six, 10–15 m long and 1–3 m deep trenches were dug out with an excavator and examined. The sediments in the trenches consist of moraine-, glaciofluvial/fluvial- and debris flow deposits. The latter consist of matrix supported, unsorted, massive beds from 1 cm to more than 1 m in thickness, with clasts up to 80 cm in diameter. A total of 16 post glacial debris flow beds are identified in five of the six trenches, representing a minimum of eight individual debris flow events. This is probably an underestimation of the debris flow activity through postglacial times as the location of the trenches was in large determined by infrastructure and were not optimally placed for mapping all debris flow deposits in the area. Also, correlation between trenches proved difficult. A total of 37 radiocarbon ages of buried soil and other organic material situated above and below debris flow deposits, together with the sedimentological and stratigraphical interpretation, show that debris flow activity has prevailed throughout the Holocene, also within the last 1000 years. A possible increase in activity within the last 3–4000 years BP has been noted. This is important knowledge to aid in the interpretation of the Quaternary history of the area but also to determine the hazard zones.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 15","pages":"5213-5226"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trench investigation to quantify debris flow activity for landslide hazard mapping in populated areas: Lessons learned from Gol, southern Norway\",\"authors\":\"Raymond S. Eilertsen,&nbsp;Kari Sletten,&nbsp;Gro Sandøy,&nbsp;Reginald Hermanns,&nbsp;Anders Romundset,&nbsp;Lena Rubensdotter\",\"doi\":\"10.1002/esp.6028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We here describe the results of stratigraphic and sedimentological examinations of debris flow deposits at Breidokk, Gol, southern Norway. The deposits are situated at the valley floor, below a steep slope with three large and several smaller debris flow channels incised into the thick till cover. The study area is populated and with abundant infrastructure such as roads, public and private buildings and other types of infrastructure, including underground water pipes and cables. Six, 10–15 m long and 1–3 m deep trenches were dug out with an excavator and examined. The sediments in the trenches consist of moraine-, glaciofluvial/fluvial- and debris flow deposits. The latter consist of matrix supported, unsorted, massive beds from 1 cm to more than 1 m in thickness, with clasts up to 80 cm in diameter. A total of 16 post glacial debris flow beds are identified in five of the six trenches, representing a minimum of eight individual debris flow events. This is probably an underestimation of the debris flow activity through postglacial times as the location of the trenches was in large determined by infrastructure and were not optimally placed for mapping all debris flow deposits in the area. Also, correlation between trenches proved difficult. A total of 37 radiocarbon ages of buried soil and other organic material situated above and below debris flow deposits, together with the sedimentological and stratigraphical interpretation, show that debris flow activity has prevailed throughout the Holocene, also within the last 1000 years. A possible increase in activity within the last 3–4000 years BP has been noted. This is important knowledge to aid in the interpretation of the Quaternary history of the area but also to determine the hazard zones.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"49 15\",\"pages\":\"5213-5226\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.6028\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6028","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trench investigation to quantify debris flow activity for landslide hazard mapping in populated areas: Lessons learned from Gol, southern Norway

We here describe the results of stratigraphic and sedimentological examinations of debris flow deposits at Breidokk, Gol, southern Norway. The deposits are situated at the valley floor, below a steep slope with three large and several smaller debris flow channels incised into the thick till cover. The study area is populated and with abundant infrastructure such as roads, public and private buildings and other types of infrastructure, including underground water pipes and cables. Six, 10–15 m long and 1–3 m deep trenches were dug out with an excavator and examined. The sediments in the trenches consist of moraine-, glaciofluvial/fluvial- and debris flow deposits. The latter consist of matrix supported, unsorted, massive beds from 1 cm to more than 1 m in thickness, with clasts up to 80 cm in diameter. A total of 16 post glacial debris flow beds are identified in five of the six trenches, representing a minimum of eight individual debris flow events. This is probably an underestimation of the debris flow activity through postglacial times as the location of the trenches was in large determined by infrastructure and were not optimally placed for mapping all debris flow deposits in the area. Also, correlation between trenches proved difficult. A total of 37 radiocarbon ages of buried soil and other organic material situated above and below debris flow deposits, together with the sedimentological and stratigraphical interpretation, show that debris flow activity has prevailed throughout the Holocene, also within the last 1000 years. A possible increase in activity within the last 3–4000 years BP has been noted. This is important knowledge to aid in the interpretation of the Quaternary history of the area but also to determine the hazard zones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
期刊最新文献
Issue Information Neogene drainage evolution of SW Anatolia (Türkiye): Integration of morphotectonics, drainage and denudation analyses Predicting flow resistance in rough-bed rivers from topographic roughness: Review and open questions Assessing proxy methods for measuring bedrock erodibility in fluvial impact erosion Controls on glacial kettle morphology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1