{"title":"月球土壤中蝌蚪状纳米颗粒的撞击熔化及其高温化学园的意义","authors":"Qi He, Wentao Hu, Long Xiao, Xiang Zhang, Zaicong Wang, Yuqi Qian, Jinfu Shu, Jiawei Zhao, Yuqing Chang, Chen Li, Zhiyong Xiao, Xiaoping Zhang, Yiheng Li, Papineau Dominic, Siyuan Zhao, Jun Huang, Jiannan Zhao, Jiang Wang, Xiang Wu, Zhaochu Hu, Keqing Zong, Zhenbing She, Yang Li","doi":"10.1029/2024JE008584","DOIUrl":null,"url":null,"abstract":"<p>Nanoparticles within lunar soil grains are a primary product of space weathering. The microstructural and chemical characteristics of the nanoparticles are diverse and their formation mechanisms are still under debate. In this paper, for the first time, tadpole-shaped nanoparticles (with Fe-Ni(-S) head and Fe-Ti-O tail) were found in the impact melt glass spherule of an agglutinate in the returned Chang'e-5 lunar soil, and their possible formation mechanisms were discussed. In terms of the Fe-Ni(-S) “head” formation mechanisms, they probably produced by shock-induced dissemination. Another possibility is that the Fe-Ni(-S) heads were derived from the impact glass due to liquid immiscibility. The S degassing of FeS was contributed to nanophase Fe-Ni metal. For the Fe-Ti-O tails, they are devitrified ilmenites, nucleated as a result of the passage of the Fe nanoparticles through the melt. These nanoparticles formed though impact-induced nonequilibrium growth and recorded the movement and migration of the Fe-Ni-S nanoparticles within the melt. The tadpole-shape nanoparticles provide a new example of viscous fingering in impact melts and the associated ilmenite dendrites point to the formation of high-temperature chemical gardens in lunar impact melt.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tadpole-Shaped Nanoparticles in Impact Melt and Implication of High Temperature Chemical Garden in Lunar Soil\",\"authors\":\"Qi He, Wentao Hu, Long Xiao, Xiang Zhang, Zaicong Wang, Yuqi Qian, Jinfu Shu, Jiawei Zhao, Yuqing Chang, Chen Li, Zhiyong Xiao, Xiaoping Zhang, Yiheng Li, Papineau Dominic, Siyuan Zhao, Jun Huang, Jiannan Zhao, Jiang Wang, Xiang Wu, Zhaochu Hu, Keqing Zong, Zhenbing She, Yang Li\",\"doi\":\"10.1029/2024JE008584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoparticles within lunar soil grains are a primary product of space weathering. The microstructural and chemical characteristics of the nanoparticles are diverse and their formation mechanisms are still under debate. In this paper, for the first time, tadpole-shaped nanoparticles (with Fe-Ni(-S) head and Fe-Ti-O tail) were found in the impact melt glass spherule of an agglutinate in the returned Chang'e-5 lunar soil, and their possible formation mechanisms were discussed. In terms of the Fe-Ni(-S) “head” formation mechanisms, they probably produced by shock-induced dissemination. Another possibility is that the Fe-Ni(-S) heads were derived from the impact glass due to liquid immiscibility. The S degassing of FeS was contributed to nanophase Fe-Ni metal. For the Fe-Ti-O tails, they are devitrified ilmenites, nucleated as a result of the passage of the Fe nanoparticles through the melt. These nanoparticles formed though impact-induced nonequilibrium growth and recorded the movement and migration of the Fe-Ni-S nanoparticles within the melt. The tadpole-shape nanoparticles provide a new example of viscous fingering in impact melts and the associated ilmenite dendrites point to the formation of high-temperature chemical gardens in lunar impact melt.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008584\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008584","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
月球土壤颗粒中的纳米颗粒是空间风化的主要产物。纳米颗粒的微观结构和化学特性是多种多样的,其形成机制仍在争论中。本文首次在“嫦娥五号”返回月球土壤的撞击熔融玻璃球中发现了具有Fe-Ni(-S)头部和Fe-Ti-O尾部的蝌蚪状纳米颗粒,并对其可能的形成机制进行了探讨。就Fe-Ni(-S)“头”的形成机制而言,它们可能是由冲击诱导扩散产生的。另一种可能性是Fe-Ni(-S)头是由于液体不混溶而从冲击玻璃中产生的。fees的S脱气是纳米相Fe-Ni金属的重要组成部分。对于Fe- ti - o尾部,它们是反氮化钛矿,由于Fe纳米颗粒通过熔体而成核。这些纳米颗粒通过碰撞诱导的非平衡生长形成,并记录了Fe-Ni-S纳米颗粒在熔体中的运动和迁移。蝌蚪状纳米颗粒提供了撞击熔体中粘性指状的新例子,而相关的钛铁矿枝晶则指向了月球撞击熔体中高温化学园的形成。
Tadpole-Shaped Nanoparticles in Impact Melt and Implication of High Temperature Chemical Garden in Lunar Soil
Nanoparticles within lunar soil grains are a primary product of space weathering. The microstructural and chemical characteristics of the nanoparticles are diverse and their formation mechanisms are still under debate. In this paper, for the first time, tadpole-shaped nanoparticles (with Fe-Ni(-S) head and Fe-Ti-O tail) were found in the impact melt glass spherule of an agglutinate in the returned Chang'e-5 lunar soil, and their possible formation mechanisms were discussed. In terms of the Fe-Ni(-S) “head” formation mechanisms, they probably produced by shock-induced dissemination. Another possibility is that the Fe-Ni(-S) heads were derived from the impact glass due to liquid immiscibility. The S degassing of FeS was contributed to nanophase Fe-Ni metal. For the Fe-Ti-O tails, they are devitrified ilmenites, nucleated as a result of the passage of the Fe nanoparticles through the melt. These nanoparticles formed though impact-induced nonequilibrium growth and recorded the movement and migration of the Fe-Ni-S nanoparticles within the melt. The tadpole-shape nanoparticles provide a new example of viscous fingering in impact melts and the associated ilmenite dendrites point to the formation of high-temperature chemical gardens in lunar impact melt.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.