提高虚拟同步发电机电压支持能力的过电压穿越控制策略

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2024-11-26 DOI:10.1049/gtd2.13335
Xinmin Zhao, Haibo Zhang, Joseph Ndonji, Weiyong Jiang, Kai Li
{"title":"提高虚拟同步发电机电压支持能力的过电压穿越控制策略","authors":"Xinmin Zhao,&nbsp;Haibo Zhang,&nbsp;Joseph Ndonji,&nbsp;Weiyong Jiang,&nbsp;Kai Li","doi":"10.1049/gtd2.13335","DOIUrl":null,"url":null,"abstract":"<p>As the application of renewable energy sources continues to increase, the virtual synchronous generator (VSG) has been proposed and received widespread attention. In China, new energy stations are typically situated at the transmission end of LCC-HVDC lines. A failure in DC commutation can lead to overvoltage at the DC transmission end, thus posing a significant risk of disconnection from the grid due to the occurrence of overvoltage. Compared to when low-voltage occur, it was discovered that, during overvoltage, VSGs face difficulties in rapidly attaining the preset power and transient instability. These issues can significantly impact the voltage support capability of the VSG. To address these concerns, an enhanced control strategy has been proposed. The control strategy sets reasonable power reference values, leveraging the advantage of fast voltage response in VSG by matching its voltage with virtual impedance. This ensures that the power rapidly reaches the designated reference value while reducing fluctuations in power angle. The transient power-angle stability is validated using the energy function method. This approach enhances the reactive power absorbed by VSG, thereby mitigating transient overvoltage. Finally, simulation results from PSCAD/EMTDC validate the rationale and effectiveness of the control strategy.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 23","pages":"3995-4007"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13335","citationCount":"0","resultStr":"{\"title\":\"Overvoltage ride through control strategy for improving voltage support capability of virtual synchronous generator\",\"authors\":\"Xinmin Zhao,&nbsp;Haibo Zhang,&nbsp;Joseph Ndonji,&nbsp;Weiyong Jiang,&nbsp;Kai Li\",\"doi\":\"10.1049/gtd2.13335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the application of renewable energy sources continues to increase, the virtual synchronous generator (VSG) has been proposed and received widespread attention. In China, new energy stations are typically situated at the transmission end of LCC-HVDC lines. A failure in DC commutation can lead to overvoltage at the DC transmission end, thus posing a significant risk of disconnection from the grid due to the occurrence of overvoltage. Compared to when low-voltage occur, it was discovered that, during overvoltage, VSGs face difficulties in rapidly attaining the preset power and transient instability. These issues can significantly impact the voltage support capability of the VSG. To address these concerns, an enhanced control strategy has been proposed. The control strategy sets reasonable power reference values, leveraging the advantage of fast voltage response in VSG by matching its voltage with virtual impedance. This ensures that the power rapidly reaches the designated reference value while reducing fluctuations in power angle. The transient power-angle stability is validated using the energy function method. This approach enhances the reactive power absorbed by VSG, thereby mitigating transient overvoltage. Finally, simulation results from PSCAD/EMTDC validate the rationale and effectiveness of the control strategy.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 23\",\"pages\":\"3995-4007\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13335\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13335\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13335","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着可再生能源应用的不断增加,虚拟同步发电机(VSG)被提出并受到广泛关注。在中国,新能源站通常位于LCC-HVDC线路的传输端。直流换相故障可能导致直流传输端过电压,从而造成因过电压发生而与电网断开的重大风险。与低压时相比,研究发现过电压时,系统难以快速达到预设功率,且存在暂态不稳定。这些问题会严重影响VSG的电压支持能力。为了解决这些问题,提出了一种增强的控制策略。该控制策略设定合理的功率参考值,利用VSG电压与虚阻抗相匹配的电压响应快的优点。这样可以保证功率迅速达到指定的参考值,同时减少功率角的波动。利用能量函数法验证了暂态功率角稳定性。这种方法提高了VSG吸收的无功功率,从而减轻了瞬态过电压。最后,PSCAD/EMTDC的仿真结果验证了控制策略的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overvoltage ride through control strategy for improving voltage support capability of virtual synchronous generator

As the application of renewable energy sources continues to increase, the virtual synchronous generator (VSG) has been proposed and received widespread attention. In China, new energy stations are typically situated at the transmission end of LCC-HVDC lines. A failure in DC commutation can lead to overvoltage at the DC transmission end, thus posing a significant risk of disconnection from the grid due to the occurrence of overvoltage. Compared to when low-voltage occur, it was discovered that, during overvoltage, VSGs face difficulties in rapidly attaining the preset power and transient instability. These issues can significantly impact the voltage support capability of the VSG. To address these concerns, an enhanced control strategy has been proposed. The control strategy sets reasonable power reference values, leveraging the advantage of fast voltage response in VSG by matching its voltage with virtual impedance. This ensures that the power rapidly reaches the designated reference value while reducing fluctuations in power angle. The transient power-angle stability is validated using the energy function method. This approach enhances the reactive power absorbed by VSG, thereby mitigating transient overvoltage. Finally, simulation results from PSCAD/EMTDC validate the rationale and effectiveness of the control strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Analysis of broadband oscillation mechanisms in grid-forming and grid-following converters based on virtual synchronous generator A state-variable-preserving method for the efficient modelling of inverter-based resources in parallel EMT simulation Frequency safety demand and coordinated control strategy for power system with wind power and energy storage Stochastic optimization of integrated electricity-heat-gas energy system considering uncertainty of indirect carbon emission intensity Field analysis of directionality measurement with inverter based resources in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1