循环单轴压缩节理试件疲劳力学及裂纹演化特征研究

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-10-28 DOI:10.1111/ffe.14471
Miao Chen, Zihao Liu, Xiaoshan Wang, Jiangbo Zheng, Liu Yang, Feng Bai, Chuanwei Zang
{"title":"循环单轴压缩节理试件疲劳力学及裂纹演化特征研究","authors":"Miao Chen,&nbsp;Zihao Liu,&nbsp;Xiaoshan Wang,&nbsp;Jiangbo Zheng,&nbsp;Liu Yang,&nbsp;Feng Bai,&nbsp;Chuanwei Zang","doi":"10.1111/ffe.14471","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nonpersistent joints are prevalent in engineering rock masses and are sensitive to cyclic loads induced by geological movements and engineering disturbances. Therefore, studying the fatigue mechanisms of rock masses with nonpersistent joints under cyclic compressive loads is crucial for ensuring the rational design and long-term stability of rock engineering structures. Based on laboratory experiments, this study employed the discrete element method to create specimens with different nonpersistent joints, and uniaxial compressive cyclic loading tests were conducted on these specimens with different maximum cyclic stress levels. The results show that the joint inclination significantly affects the characteristics of jointed rock, such as deformation modulus, irreversible strain, energy evolution, and crack characteristics. Increasing the maximum stress in the stress path results in a rapid release of hysteretic energy in the jointed regions of the rock, which leads to an exponential decrease in fatigue life while an increase in initial irreversible strain, final irreversible strain, and hysteretic energy density. Additionally, the shear fracture zones on both sides of the model expand, and the propagation and merging of cracks between joints become more extensive and complex. The results are significant for studying rock fatigue instability and structure engineering design.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 1","pages":"261-278"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Fatigue Mechanics and Crack Evolution Characteristics of Jointed Specimens Under Cyclic Uniaxial Compression\",\"authors\":\"Miao Chen,&nbsp;Zihao Liu,&nbsp;Xiaoshan Wang,&nbsp;Jiangbo Zheng,&nbsp;Liu Yang,&nbsp;Feng Bai,&nbsp;Chuanwei Zang\",\"doi\":\"10.1111/ffe.14471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Nonpersistent joints are prevalent in engineering rock masses and are sensitive to cyclic loads induced by geological movements and engineering disturbances. Therefore, studying the fatigue mechanisms of rock masses with nonpersistent joints under cyclic compressive loads is crucial for ensuring the rational design and long-term stability of rock engineering structures. Based on laboratory experiments, this study employed the discrete element method to create specimens with different nonpersistent joints, and uniaxial compressive cyclic loading tests were conducted on these specimens with different maximum cyclic stress levels. The results show that the joint inclination significantly affects the characteristics of jointed rock, such as deformation modulus, irreversible strain, energy evolution, and crack characteristics. Increasing the maximum stress in the stress path results in a rapid release of hysteretic energy in the jointed regions of the rock, which leads to an exponential decrease in fatigue life while an increase in initial irreversible strain, final irreversible strain, and hysteretic energy density. Additionally, the shear fracture zones on both sides of the model expand, and the propagation and merging of cracks between joints become more extensive and complex. The results are significant for studying rock fatigue instability and structure engineering design.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 1\",\"pages\":\"261-278\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14471\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14471","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

非持久节理在工程岩体中普遍存在,对地质运动和工程扰动引起的循环荷载非常敏感。因此,研究含非持久节理岩体在循环压缩荷载作用下的疲劳机理,对于保证岩石工程结构的合理设计和长期稳定具有重要意义。在室内试验的基础上,采用离散元法制作不同非持久节理的试件,对不同最大循环应力水平的试件进行单轴压缩循环加载试验。结果表明:节理倾角显著影响节理岩石的变形模量、不可逆应变、能量演化和裂纹特征等特征。增大应力路径上的最大应力会导致岩石节理区迟滞能的快速释放,导致疲劳寿命呈指数下降,而初始不可逆应变、最终不可逆应变和迟滞能密度均增加。同时,模型两侧的剪切断裂带扩大,节理间裂纹的扩展和合并变得更加广泛和复杂。研究结果对岩石疲劳失稳研究和结构工程设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Fatigue Mechanics and Crack Evolution Characteristics of Jointed Specimens Under Cyclic Uniaxial Compression

Nonpersistent joints are prevalent in engineering rock masses and are sensitive to cyclic loads induced by geological movements and engineering disturbances. Therefore, studying the fatigue mechanisms of rock masses with nonpersistent joints under cyclic compressive loads is crucial for ensuring the rational design and long-term stability of rock engineering structures. Based on laboratory experiments, this study employed the discrete element method to create specimens with different nonpersistent joints, and uniaxial compressive cyclic loading tests were conducted on these specimens with different maximum cyclic stress levels. The results show that the joint inclination significantly affects the characteristics of jointed rock, such as deformation modulus, irreversible strain, energy evolution, and crack characteristics. Increasing the maximum stress in the stress path results in a rapid release of hysteretic energy in the jointed regions of the rock, which leads to an exponential decrease in fatigue life while an increase in initial irreversible strain, final irreversible strain, and hysteretic energy density. Additionally, the shear fracture zones on both sides of the model expand, and the propagation and merging of cracks between joints become more extensive and complex. The results are significant for studying rock fatigue instability and structure engineering design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Issue Information Fatigue Design Curves for Industrial Applications: A Review A High Load Clipping Criterion Based on the Probabilistic Extreme Load of Fatigue Spectrum The Dual Role of Nb Microalloying on the High-Cycle Fatigue of 1.0%C–1.5%Cr Bearing Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1