{"title":"基于纳什议价理论优化低碳出行的电氢合作交易模型","authors":"Guangsheng Pan;Wei Gu;Xiaogang Chen;Yuping Lu;Suhan Zhang","doi":"10.17775/CSEEJPES.2021.02630","DOIUrl":null,"url":null,"abstract":"To further improve the utilization level of distributed photovoltaics (PV) and realize low-carbon travel, a novel optimization cooperative model that considers multi-stakeholders in-cluding integrated prosumers (IP), power to hydrogen (P2H), and grid company (GC) is proposed, based on the Nash bargaining theory. Electricity trading among the three and hydrogen trading between IP and P2H is considered in the model to maximize their own interests. Specifically, IP focus on distributed PV integration and low carbon travels, P2H strives to improve cost competitiveness of hydrogen, and electricity-hydrogen trading prices and quantities are optimized between them. Also, GC obtains profits by charging grid fees considering power flow constraints. The cooperation game model is transformed into a mixed-integer linear programming problem through linearization methods. Case studies show that electricity-hydrogen trading among the three has apparent advantages over pure electricity coupling or non-cooperation. With future reduction of investment prices of PV and P2H and maturity of the carbon trading market, the profit margin of this cooperation model can be further enhanced.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 6","pages":"2577-2586"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165641","citationCount":"0","resultStr":"{\"title\":\"Cooperative Electricity-Hydrogen Trading Model for Optimizing Low-Carbon Travel Using Nash Bargaining Theory\",\"authors\":\"Guangsheng Pan;Wei Gu;Xiaogang Chen;Yuping Lu;Suhan Zhang\",\"doi\":\"10.17775/CSEEJPES.2021.02630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To further improve the utilization level of distributed photovoltaics (PV) and realize low-carbon travel, a novel optimization cooperative model that considers multi-stakeholders in-cluding integrated prosumers (IP), power to hydrogen (P2H), and grid company (GC) is proposed, based on the Nash bargaining theory. Electricity trading among the three and hydrogen trading between IP and P2H is considered in the model to maximize their own interests. Specifically, IP focus on distributed PV integration and low carbon travels, P2H strives to improve cost competitiveness of hydrogen, and electricity-hydrogen trading prices and quantities are optimized between them. Also, GC obtains profits by charging grid fees considering power flow constraints. The cooperation game model is transformed into a mixed-integer linear programming problem through linearization methods. Case studies show that electricity-hydrogen trading among the three has apparent advantages over pure electricity coupling or non-cooperation. With future reduction of investment prices of PV and P2H and maturity of the carbon trading market, the profit margin of this cooperation model can be further enhanced.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 6\",\"pages\":\"2577-2586\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10165641/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10165641/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Cooperative Electricity-Hydrogen Trading Model for Optimizing Low-Carbon Travel Using Nash Bargaining Theory
To further improve the utilization level of distributed photovoltaics (PV) and realize low-carbon travel, a novel optimization cooperative model that considers multi-stakeholders in-cluding integrated prosumers (IP), power to hydrogen (P2H), and grid company (GC) is proposed, based on the Nash bargaining theory. Electricity trading among the three and hydrogen trading between IP and P2H is considered in the model to maximize their own interests. Specifically, IP focus on distributed PV integration and low carbon travels, P2H strives to improve cost competitiveness of hydrogen, and electricity-hydrogen trading prices and quantities are optimized between them. Also, GC obtains profits by charging grid fees considering power flow constraints. The cooperation game model is transformed into a mixed-integer linear programming problem through linearization methods. Case studies show that electricity-hydrogen trading among the three has apparent advantages over pure electricity coupling or non-cooperation. With future reduction of investment prices of PV and P2H and maturity of the carbon trading market, the profit margin of this cooperation model can be further enhanced.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.