{"title":"在光锥QCD求和规则内形成\\(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+\\)的因子","authors":"Hui-Hui Duan, Yong-Lu Liu, Qin Chang, Ming-Qiu Huang","doi":"10.1140/epjc/s10052-024-13622-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we calculated the form factors of the weak decay process <span>\\(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+\\)</span>, where the final charm baryon represents an excited state with spin-parity <span>\\(\\frac{1}{2}^-\\)</span>. Utilizing the light-cone QCD sum rules approach, we incorporated the contributions of the lowest two charm baryon states: the ground state <span>\\(\\varLambda _c\\)</span> with <span>\\(J^P=\\frac{1}{2}^+\\)</span> and the excited state <span>\\(\\varLambda _c(2595)^+\\)</span> with <span>\\(J^P=\\frac{1}{2}^-\\)</span> in the hadronic representation of the <span>\\(\\varLambda _b \\rightarrow \\varLambda _c(2595)^+\\)</span> transition correlation function. This approach allows us to extract the form factors of the <span>\\(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+\\)</span> from <span>\\(\\varLambda _b^0 \\rightarrow \\varLambda _c^+\\)</span> transition. During the light-cone QCD sum rules procedure, we employed the light-cone distribution amplitudes (LCDAs) of the <span>\\(\\varLambda _b\\)</span> baryon. Furthermore, by combining these form factors with the helicity amplitudes of the bottom baryon transition matrix elements, we calculated the differential decay widths for the processes <span>\\(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+\\ell ^-\\bar{\\nu }_\\ell \\)</span> and provided the optimal choice of the interpolating current for <span>\\(\\varLambda _c\\)</span> in this process. Additionally, within the lifetime of <span>\\(\\varLambda _b^0\\)</span>, we obtained the absolute branching fractions for the semileptonic decays <span>\\(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+ \\ell ^- \\bar{\\nu }_\\ell \\)</span>. With the branching fractions of <span>\\(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+ \\ell ^- \\bar{\\nu }_\\ell \\)</span> calculated in this work, we also determined the parameter <span>\\(\\mathcal {R}(\\varLambda _c(2595)^+)\\)</span> which tests the lepton flavor universality. This parameter is defined as the ratio of branching fractions <span>\\(\\mathcal {B}r(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+\\tau ^-\\bar{\\nu }_\\tau )\\)</span> and <span>\\(\\mathcal {B}r(\\varLambda _b^0 \\rightarrow \\varLambda _c(2595)^+\\mu ^-\\bar{\\nu }_\\mu )\\)</span>. Our results provide a valuable theoretical test for these decay channels and offer insights into the LCDAs of bottom baryons, paving the way for further in-depth investigations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13622-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Form factors of \\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+\\\\) within light-cone QCD sum rules\",\"authors\":\"Hui-Hui Duan, Yong-Lu Liu, Qin Chang, Ming-Qiu Huang\",\"doi\":\"10.1140/epjc/s10052-024-13622-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we calculated the form factors of the weak decay process <span>\\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+\\\\)</span>, where the final charm baryon represents an excited state with spin-parity <span>\\\\(\\\\frac{1}{2}^-\\\\)</span>. Utilizing the light-cone QCD sum rules approach, we incorporated the contributions of the lowest two charm baryon states: the ground state <span>\\\\(\\\\varLambda _c\\\\)</span> with <span>\\\\(J^P=\\\\frac{1}{2}^+\\\\)</span> and the excited state <span>\\\\(\\\\varLambda _c(2595)^+\\\\)</span> with <span>\\\\(J^P=\\\\frac{1}{2}^-\\\\)</span> in the hadronic representation of the <span>\\\\(\\\\varLambda _b \\\\rightarrow \\\\varLambda _c(2595)^+\\\\)</span> transition correlation function. This approach allows us to extract the form factors of the <span>\\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+\\\\)</span> from <span>\\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c^+\\\\)</span> transition. During the light-cone QCD sum rules procedure, we employed the light-cone distribution amplitudes (LCDAs) of the <span>\\\\(\\\\varLambda _b\\\\)</span> baryon. Furthermore, by combining these form factors with the helicity amplitudes of the bottom baryon transition matrix elements, we calculated the differential decay widths for the processes <span>\\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+\\\\ell ^-\\\\bar{\\\\nu }_\\\\ell \\\\)</span> and provided the optimal choice of the interpolating current for <span>\\\\(\\\\varLambda _c\\\\)</span> in this process. Additionally, within the lifetime of <span>\\\\(\\\\varLambda _b^0\\\\)</span>, we obtained the absolute branching fractions for the semileptonic decays <span>\\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+ \\\\ell ^- \\\\bar{\\\\nu }_\\\\ell \\\\)</span>. With the branching fractions of <span>\\\\(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+ \\\\ell ^- \\\\bar{\\\\nu }_\\\\ell \\\\)</span> calculated in this work, we also determined the parameter <span>\\\\(\\\\mathcal {R}(\\\\varLambda _c(2595)^+)\\\\)</span> which tests the lepton flavor universality. This parameter is defined as the ratio of branching fractions <span>\\\\(\\\\mathcal {B}r(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+\\\\tau ^-\\\\bar{\\\\nu }_\\\\tau )\\\\)</span> and <span>\\\\(\\\\mathcal {B}r(\\\\varLambda _b^0 \\\\rightarrow \\\\varLambda _c(2595)^+\\\\mu ^-\\\\bar{\\\\nu }_\\\\mu )\\\\)</span>. Our results provide a valuable theoretical test for these decay channels and offer insights into the LCDAs of bottom baryons, paving the way for further in-depth investigations.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 12\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13622-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13622-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13622-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Form factors of \(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+\) within light-cone QCD sum rules
In this work, we calculated the form factors of the weak decay process \(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+\), where the final charm baryon represents an excited state with spin-parity \(\frac{1}{2}^-\). Utilizing the light-cone QCD sum rules approach, we incorporated the contributions of the lowest two charm baryon states: the ground state \(\varLambda _c\) with \(J^P=\frac{1}{2}^+\) and the excited state \(\varLambda _c(2595)^+\) with \(J^P=\frac{1}{2}^-\) in the hadronic representation of the \(\varLambda _b \rightarrow \varLambda _c(2595)^+\) transition correlation function. This approach allows us to extract the form factors of the \(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+\) from \(\varLambda _b^0 \rightarrow \varLambda _c^+\) transition. During the light-cone QCD sum rules procedure, we employed the light-cone distribution amplitudes (LCDAs) of the \(\varLambda _b\) baryon. Furthermore, by combining these form factors with the helicity amplitudes of the bottom baryon transition matrix elements, we calculated the differential decay widths for the processes \(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+\ell ^-\bar{\nu }_\ell \) and provided the optimal choice of the interpolating current for \(\varLambda _c\) in this process. Additionally, within the lifetime of \(\varLambda _b^0\), we obtained the absolute branching fractions for the semileptonic decays \(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+ \ell ^- \bar{\nu }_\ell \). With the branching fractions of \(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+ \ell ^- \bar{\nu }_\ell \) calculated in this work, we also determined the parameter \(\mathcal {R}(\varLambda _c(2595)^+)\) which tests the lepton flavor universality. This parameter is defined as the ratio of branching fractions \(\mathcal {B}r(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+\tau ^-\bar{\nu }_\tau )\) and \(\mathcal {B}r(\varLambda _b^0 \rightarrow \varLambda _c(2595)^+\mu ^-\bar{\nu }_\mu )\). Our results provide a valuable theoretical test for these decay channels and offer insights into the LCDAs of bottom baryons, paving the way for further in-depth investigations.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.