Hui Chen, Xiaolong Li, Haomai Zhang, Peng Yang, Yingwen Liu, Wenlian Ye, Chunjie Yan, Xiaojun Wang
{"title":"微重力条件下液氢储罐热力排气系统控制策略优化","authors":"Hui Chen, Xiaolong Li, Haomai Zhang, Peng Yang, Yingwen Liu, Wenlian Ye, Chunjie Yan, Xiaojun Wang","doi":"10.1007/s12217-024-10156-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study employed a lumped vapor model to investigate the depressurization dynamics during the thermodynamic venting process in a cryogenic liquid hydrogen storage tank under microgravity conditions. The effects of different control strategies-such as flow distribution, circulation flow rate, spray angle, and throttle valve switching time-on the performance of the thermodynamic venting system (TVS) were studied. Building on this foundation, the control strategies are refined across various filling rates and heat loads. The findings indicate that directing the flow towards the upper nozzle proximate to the vapor enhances the depressurization rate and augments the utilization of cooling capacity. The optimal circulation flow rate matches the heat entering the air pillow, and increases with higher heat load and lower filling rate. When the injection angle is 60°, the TVS achieves optimal performance with the fastest depressurization rate and no thermal stratification. The throttle valve opens during the early depressurization stage and closes when the pressure drops to the critical pressure <i>P</i><sub>cr</sub>, resulting in better performance. A lower filling rate and higher heat load lead to an increase in <i>P</i><sub>cr</sub>. This study provides a solid foundation for optimizing TVS control under various conditions, ultimately extending the storage duration of propellants in orbit.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control Strategy Optimization of Thermodynamic Venting System in Liquid Hydrogen Storage Tank Under Microgravity\",\"authors\":\"Hui Chen, Xiaolong Li, Haomai Zhang, Peng Yang, Yingwen Liu, Wenlian Ye, Chunjie Yan, Xiaojun Wang\",\"doi\":\"10.1007/s12217-024-10156-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study employed a lumped vapor model to investigate the depressurization dynamics during the thermodynamic venting process in a cryogenic liquid hydrogen storage tank under microgravity conditions. The effects of different control strategies-such as flow distribution, circulation flow rate, spray angle, and throttle valve switching time-on the performance of the thermodynamic venting system (TVS) were studied. Building on this foundation, the control strategies are refined across various filling rates and heat loads. The findings indicate that directing the flow towards the upper nozzle proximate to the vapor enhances the depressurization rate and augments the utilization of cooling capacity. The optimal circulation flow rate matches the heat entering the air pillow, and increases with higher heat load and lower filling rate. When the injection angle is 60°, the TVS achieves optimal performance with the fastest depressurization rate and no thermal stratification. The throttle valve opens during the early depressurization stage and closes when the pressure drops to the critical pressure <i>P</i><sub>cr</sub>, resulting in better performance. A lower filling rate and higher heat load lead to an increase in <i>P</i><sub>cr</sub>. This study provides a solid foundation for optimizing TVS control under various conditions, ultimately extending the storage duration of propellants in orbit.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10156-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10156-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Control Strategy Optimization of Thermodynamic Venting System in Liquid Hydrogen Storage Tank Under Microgravity
This study employed a lumped vapor model to investigate the depressurization dynamics during the thermodynamic venting process in a cryogenic liquid hydrogen storage tank under microgravity conditions. The effects of different control strategies-such as flow distribution, circulation flow rate, spray angle, and throttle valve switching time-on the performance of the thermodynamic venting system (TVS) were studied. Building on this foundation, the control strategies are refined across various filling rates and heat loads. The findings indicate that directing the flow towards the upper nozzle proximate to the vapor enhances the depressurization rate and augments the utilization of cooling capacity. The optimal circulation flow rate matches the heat entering the air pillow, and increases with higher heat load and lower filling rate. When the injection angle is 60°, the TVS achieves optimal performance with the fastest depressurization rate and no thermal stratification. The throttle valve opens during the early depressurization stage and closes when the pressure drops to the critical pressure Pcr, resulting in better performance. A lower filling rate and higher heat load lead to an increase in Pcr. This study provides a solid foundation for optimizing TVS control under various conditions, ultimately extending the storage duration of propellants in orbit.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology