绿色合成氧化镁纳米颗粒利用寻常镰孢菌提取物促进烧伤创面愈合。

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2025-01-06 DOI:10.1080/1061186X.2024.2445744
Mozafar Khazaei, Mohammadali Meskaraf-Asadabadi, Fatemeh Khazaei, Sepide Kadivarian, Elham Ghanbari
{"title":"绿色合成氧化镁纳米颗粒利用寻常镰孢菌提取物促进烧伤创面愈合。","authors":"Mozafar Khazaei, Mohammadali Meskaraf-Asadabadi, Fatemeh Khazaei, Sepide Kadivarian, Elham Ghanbari","doi":"10.1080/1061186X.2024.2445744","DOIUrl":null,"url":null,"abstract":"<p><p>Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats. GS-MgONPs were synthesised for the first time using a Falcaria vulgaris extract (FVE) and characterised. Thirty male Wistar rats were divided into five groups: An untreated group, conventional product treated group, GS-MgONPs (1 wt%), GS-MgONPs (3 wt%) and 5. FVE (1 wt%). Treatments commenced immediately following burn induction and were administered daily for a duration of 21 d. GS-MgONPs showed a spherical morphology with a diameter of less than 100 nm. The NPs (1% and 3 wt%) and FVE demonstrated significant growth inhibition against Staphylococcus aureus while showing no cytotoxic effects on human fibroblast cells. The proposed subjects treated with 1 wt% and 3 wt% GS-MgONPs were able to significantly increase the rate of wound closure (p < 0.05). Histological observations revealed that collagen formation and epithelial regeneration were more pronounced in the groups receiving 1 wt% and 3 wt% MgONPs. These results indicate that GS-MgONPs effectively enhance the regeneration process.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of magnesium oxide nanoparticles using the extract of <i>Falcaria vulgaris</i> to enhance the healing of burn wounds.\",\"authors\":\"Mozafar Khazaei, Mohammadali Meskaraf-Asadabadi, Fatemeh Khazaei, Sepide Kadivarian, Elham Ghanbari\",\"doi\":\"10.1080/1061186X.2024.2445744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats. GS-MgONPs were synthesised for the first time using a Falcaria vulgaris extract (FVE) and characterised. Thirty male Wistar rats were divided into five groups: An untreated group, conventional product treated group, GS-MgONPs (1 wt%), GS-MgONPs (3 wt%) and 5. FVE (1 wt%). Treatments commenced immediately following burn induction and were administered daily for a duration of 21 d. GS-MgONPs showed a spherical morphology with a diameter of less than 100 nm. The NPs (1% and 3 wt%) and FVE demonstrated significant growth inhibition against Staphylococcus aureus while showing no cytotoxic effects on human fibroblast cells. The proposed subjects treated with 1 wt% and 3 wt% GS-MgONPs were able to significantly increase the rate of wound closure (p < 0.05). Histological observations revealed that collagen formation and epithelial regeneration were more pronounced in the groups receiving 1 wt% and 3 wt% MgONPs. These results indicate that GS-MgONPs effectively enhance the regeneration process.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2445744\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2445744","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

治疗烧伤损伤一直是一个挑战,因为任何产品都应该便宜,容易获得,并具有抗菌商品和组织再生特性。绿色合成的氧化镁纳米颗粒(GS-MgONPs)在生物组织中具有安全、低毒性和较好的应用安全性,同时具有抗菌作用,具有良好的应用前景。本研究旨在评价GS-MgONPs对大鼠烧伤创面的治疗效果。本文首次以寻常Falcaria vulgaris提取物(FVE)合成了GS-MgONPs,并对其进行了表征。30只雄性Wistar大鼠分为5组:1组;未经治疗组2。常规产品处理组3。GS-MgONPs浓度为1wt % 4.3 GS-MgONPs浓度为3wt% 5。FVE (1 wt%)。通过与受热物体接触建立二度烧伤创面模型。烧伤诱导后立即开始治疗,每天给药,持续21天。GS-MgONPs呈球形,直径小于100 nm。NPs(1%和3wt%)和FVE对金黄色葡萄球菌有明显的生长抑制作用,而对人成纤维细胞没有细胞毒性作用。使用1 wt%和3 wt% GS-MgONPs治疗的受试者能够显著提高伤口愈合率(p< 0.05)。组织学观察显示,在接受1 wt%和3 wt% MgONPs的组中,胶原形成和上皮再生更为明显。这些结果表明,GS-MgONPs有效地促进了再生过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green synthesis of magnesium oxide nanoparticles using the extract of Falcaria vulgaris to enhance the healing of burn wounds.

Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats. GS-MgONPs were synthesised for the first time using a Falcaria vulgaris extract (FVE) and characterised. Thirty male Wistar rats were divided into five groups: An untreated group, conventional product treated group, GS-MgONPs (1 wt%), GS-MgONPs (3 wt%) and 5. FVE (1 wt%). Treatments commenced immediately following burn induction and were administered daily for a duration of 21 d. GS-MgONPs showed a spherical morphology with a diameter of less than 100 nm. The NPs (1% and 3 wt%) and FVE demonstrated significant growth inhibition against Staphylococcus aureus while showing no cytotoxic effects on human fibroblast cells. The proposed subjects treated with 1 wt% and 3 wt% GS-MgONPs were able to significantly increase the rate of wound closure (p < 0.05). Histological observations revealed that collagen formation and epithelial regeneration were more pronounced in the groups receiving 1 wt% and 3 wt% MgONPs. These results indicate that GS-MgONPs effectively enhance the regeneration process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Strategies and challenges of cytosolic delivery of proteins. Anti-angiogenic activity of polymeric nanoparticles loaded with ursolic acid. Comparison of the accumulation manner of a macromolecular drug between two mouse tumour models: study with magnetic resonance imaging and the model macromolecular drug, gadolinium-conjugated dextran. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. Development of non-viral targeted RNA delivery vehicles - a key factor in success of therapeutic RNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1