Luke W Desmond, Lamya'a M Dawud, Lyanna R Kessler, Tyler Akonom, Elizabeth A H Hunter, Evan M Holbrook, Nathan D Andersen, John D Sterrett, Dennis A Boateng, Barbara J Stuart, Lucas Guerrero, Matthew J Gebert, Pei-San Tsai, Dominik Langgartner, Stefan O Reber, Matthew G Frank, Christopher A Lowry
{"title":"母牛分枝杆菌ATCC 15483对“西式”饮食诱导的青春期雄性小鼠体重增加和内脏肥胖的保护作用","authors":"Luke W Desmond, Lamya'a M Dawud, Lyanna R Kessler, Tyler Akonom, Elizabeth A H Hunter, Evan M Holbrook, Nathan D Andersen, John D Sterrett, Dennis A Boateng, Barbara J Stuart, Lucas Guerrero, Matthew J Gebert, Pei-San Tsai, Dominik Langgartner, Stefan O Reber, Matthew G Frank, Christopher A Lowry","doi":"10.1016/j.bbi.2024.12.029","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties. This study aimed to assess whether weekly subcutaneous administrations of a whole-cell, heat-killed preparation of M. vaccae ATCC 15483 (eleven injections initiated one week before the onset of the diet intervention), relative to vehicle injections, in adolescent male C57BL/6N mice can mitigate inflammation associated with Western-style diet-induced obesity, which is considered a risk factor for a number of metabolic and inflammatory diseases. Our results show that treatment with M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations. The Western-style diet, relative to a control diet condition, decreased alpha diversity and altered the community composition of the gut microbiome, increasing the Bacillota to Bacteroidota ratio (formerly referred to as the Firmicutes to Bacteroidetes ratio). Despite the finding that M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations, it had no effect on the diversity or community composition of the gut microbiome, suggesting that it acts downstream of the gut microbiome to alter immunometabolic signaling. M. vaccae ATCC 15483 reduced baseline levels of biomarkers of hippocampal neuroinflammation and microglial priming, such as Nfkbia and Nlrp3, and notably decreased anxiety-like defensive behavioral responses. The current findings provide compelling evidence supporting the potential for M. vaccae ATCC 15483 as a promising intervention for prevention or treatment of adverse immunometabolic outcomes linked to the consumption of a Western-style diet and the associated dysbiosis of the gut microbiome.</p>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":" ","pages":"249-267"},"PeriodicalIF":8.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effects of Mycobacterium vaccae ATCC 15483 against \\\"Western\\\"-style diet-induced weight gain and visceral adiposity in adolescent male mice.\",\"authors\":\"Luke W Desmond, Lamya'a M Dawud, Lyanna R Kessler, Tyler Akonom, Elizabeth A H Hunter, Evan M Holbrook, Nathan D Andersen, John D Sterrett, Dennis A Boateng, Barbara J Stuart, Lucas Guerrero, Matthew J Gebert, Pei-San Tsai, Dominik Langgartner, Stefan O Reber, Matthew G Frank, Christopher A Lowry\",\"doi\":\"10.1016/j.bbi.2024.12.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties. This study aimed to assess whether weekly subcutaneous administrations of a whole-cell, heat-killed preparation of M. vaccae ATCC 15483 (eleven injections initiated one week before the onset of the diet intervention), relative to vehicle injections, in adolescent male C57BL/6N mice can mitigate inflammation associated with Western-style diet-induced obesity, which is considered a risk factor for a number of metabolic and inflammatory diseases. Our results show that treatment with M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations. The Western-style diet, relative to a control diet condition, decreased alpha diversity and altered the community composition of the gut microbiome, increasing the Bacillota to Bacteroidota ratio (formerly referred to as the Firmicutes to Bacteroidetes ratio). Despite the finding that M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations, it had no effect on the diversity or community composition of the gut microbiome, suggesting that it acts downstream of the gut microbiome to alter immunometabolic signaling. M. vaccae ATCC 15483 reduced baseline levels of biomarkers of hippocampal neuroinflammation and microglial priming, such as Nfkbia and Nlrp3, and notably decreased anxiety-like defensive behavioral responses. The current findings provide compelling evidence supporting the potential for M. vaccae ATCC 15483 as a promising intervention for prevention or treatment of adverse immunometabolic outcomes linked to the consumption of a Western-style diet and the associated dysbiosis of the gut microbiome.</p>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":\" \",\"pages\":\"249-267\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbi.2024.12.029\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bbi.2024.12.029","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Protective effects of Mycobacterium vaccae ATCC 15483 against "Western"-style diet-induced weight gain and visceral adiposity in adolescent male mice.
The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties. This study aimed to assess whether weekly subcutaneous administrations of a whole-cell, heat-killed preparation of M. vaccae ATCC 15483 (eleven injections initiated one week before the onset of the diet intervention), relative to vehicle injections, in adolescent male C57BL/6N mice can mitigate inflammation associated with Western-style diet-induced obesity, which is considered a risk factor for a number of metabolic and inflammatory diseases. Our results show that treatment with M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations. The Western-style diet, relative to a control diet condition, decreased alpha diversity and altered the community composition of the gut microbiome, increasing the Bacillota to Bacteroidota ratio (formerly referred to as the Firmicutes to Bacteroidetes ratio). Despite the finding that M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations, it had no effect on the diversity or community composition of the gut microbiome, suggesting that it acts downstream of the gut microbiome to alter immunometabolic signaling. M. vaccae ATCC 15483 reduced baseline levels of biomarkers of hippocampal neuroinflammation and microglial priming, such as Nfkbia and Nlrp3, and notably decreased anxiety-like defensive behavioral responses. The current findings provide compelling evidence supporting the potential for M. vaccae ATCC 15483 as a promising intervention for prevention or treatment of adverse immunometabolic outcomes linked to the consumption of a Western-style diet and the associated dysbiosis of the gut microbiome.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.