F Miglietta, A Collesei, C Vernieri, T Giarratano, C A Giorgi, F Girardi, G Griguolo, M Cacciatore, A Botticelli, A Vingiani, G Fotia, F Piacentini, D Massa, F Zanghì, M Marino, G Pruneri, M Fassan, A P Dei Tos, M V Dieci, V Guarneri
{"title":"开发两种机器学习模型来预测从原发性HER2-0乳腺癌到低her2转移的转化:一项概念验证研究。","authors":"F Miglietta, A Collesei, C Vernieri, T Giarratano, C A Giorgi, F Girardi, G Griguolo, M Cacciatore, A Botticelli, A Vingiani, G Fotia, F Piacentini, D Massa, F Zanghì, M Marino, G Pruneri, M Fassan, A P Dei Tos, M V Dieci, V Guarneri","doi":"10.1016/j.esmoop.2024.104087","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>HER2-low expression has gained clinical relevance in breast cancer (BC) due to the availability of anti-HER2 antibody-drug conjugates for patients with HER2-low metastatic BC. The well-reported instability of HER2-low status during disease evolution highlights the need to identify patients with HER2-0 primary BC who may develop a HER2-low phenotype at relapse. In response to the urgency of maximizing treatment access, we utilized artificial intelligence to predict this occurrence.</p><p><strong>Patients and methods: </strong>We included a large multicentric retrospective cohort of patients with BC who underwent tissue resampling at relapse. The dataset was preprocessed to address relevant issues such as missing data, feature abundance, and target class imbalance. We then trained two models: one focused on explainability [Extreme Gradient Boosting (XGBoost)] and another aimed at performance (an ensemble of XGBoost and support vector machine).</p><p><strong>Results: </strong>A total of 1200 patients were included in this study. Among 386 patients with HER2-0 primary BC and matched HER2 status at relapse, 42.5% (n = 157) converted to a HER2-low phenotype. The explainable model achieved a balanced accuracy of 58%, with a sensitivity of 53% and a specificity of 64%. The most important variables for this model were primary BC phenotype [mean Shapley value (SHAP) 0.540], primary BC histological type (SHAP 0.101), grade (SHAP 0.182), and sites of relapse (SHAP 0.008-0.213). The ensemble model had a balanced accuracy of 64%, with a sensitivity of 75% and a specificity of 53%.</p><p><strong>Conclusions: </strong>This work represents one of the first proof-of-concept applications of machine learning models to predict a highly relevant phenomenon for drug access in modern BC oncology. Starting with an explainable model and subsequently integrating it with an ensemble approach enabled us to enhance performance while maintaining transparency, explainability, and intelligibility.</p>","PeriodicalId":11877,"journal":{"name":"ESMO Open","volume":"10 1","pages":"104087"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730216/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of two machine learning models to predict conversion from primary HER2-0 breast cancer to HER2-low metastases: a proof-of-concept study.\",\"authors\":\"F Miglietta, A Collesei, C Vernieri, T Giarratano, C A Giorgi, F Girardi, G Griguolo, M Cacciatore, A Botticelli, A Vingiani, G Fotia, F Piacentini, D Massa, F Zanghì, M Marino, G Pruneri, M Fassan, A P Dei Tos, M V Dieci, V Guarneri\",\"doi\":\"10.1016/j.esmoop.2024.104087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>HER2-low expression has gained clinical relevance in breast cancer (BC) due to the availability of anti-HER2 antibody-drug conjugates for patients with HER2-low metastatic BC. The well-reported instability of HER2-low status during disease evolution highlights the need to identify patients with HER2-0 primary BC who may develop a HER2-low phenotype at relapse. In response to the urgency of maximizing treatment access, we utilized artificial intelligence to predict this occurrence.</p><p><strong>Patients and methods: </strong>We included a large multicentric retrospective cohort of patients with BC who underwent tissue resampling at relapse. The dataset was preprocessed to address relevant issues such as missing data, feature abundance, and target class imbalance. We then trained two models: one focused on explainability [Extreme Gradient Boosting (XGBoost)] and another aimed at performance (an ensemble of XGBoost and support vector machine).</p><p><strong>Results: </strong>A total of 1200 patients were included in this study. Among 386 patients with HER2-0 primary BC and matched HER2 status at relapse, 42.5% (n = 157) converted to a HER2-low phenotype. The explainable model achieved a balanced accuracy of 58%, with a sensitivity of 53% and a specificity of 64%. The most important variables for this model were primary BC phenotype [mean Shapley value (SHAP) 0.540], primary BC histological type (SHAP 0.101), grade (SHAP 0.182), and sites of relapse (SHAP 0.008-0.213). The ensemble model had a balanced accuracy of 64%, with a sensitivity of 75% and a specificity of 53%.</p><p><strong>Conclusions: </strong>This work represents one of the first proof-of-concept applications of machine learning models to predict a highly relevant phenomenon for drug access in modern BC oncology. Starting with an explainable model and subsequently integrating it with an ensemble approach enabled us to enhance performance while maintaining transparency, explainability, and intelligibility.</p>\",\"PeriodicalId\":11877,\"journal\":{\"name\":\"ESMO Open\",\"volume\":\"10 1\",\"pages\":\"104087\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730216/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESMO Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.esmoop.2024.104087\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.esmoop.2024.104087","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Development of two machine learning models to predict conversion from primary HER2-0 breast cancer to HER2-low metastases: a proof-of-concept study.
Background: HER2-low expression has gained clinical relevance in breast cancer (BC) due to the availability of anti-HER2 antibody-drug conjugates for patients with HER2-low metastatic BC. The well-reported instability of HER2-low status during disease evolution highlights the need to identify patients with HER2-0 primary BC who may develop a HER2-low phenotype at relapse. In response to the urgency of maximizing treatment access, we utilized artificial intelligence to predict this occurrence.
Patients and methods: We included a large multicentric retrospective cohort of patients with BC who underwent tissue resampling at relapse. The dataset was preprocessed to address relevant issues such as missing data, feature abundance, and target class imbalance. We then trained two models: one focused on explainability [Extreme Gradient Boosting (XGBoost)] and another aimed at performance (an ensemble of XGBoost and support vector machine).
Results: A total of 1200 patients were included in this study. Among 386 patients with HER2-0 primary BC and matched HER2 status at relapse, 42.5% (n = 157) converted to a HER2-low phenotype. The explainable model achieved a balanced accuracy of 58%, with a sensitivity of 53% and a specificity of 64%. The most important variables for this model were primary BC phenotype [mean Shapley value (SHAP) 0.540], primary BC histological type (SHAP 0.101), grade (SHAP 0.182), and sites of relapse (SHAP 0.008-0.213). The ensemble model had a balanced accuracy of 64%, with a sensitivity of 75% and a specificity of 53%.
Conclusions: This work represents one of the first proof-of-concept applications of machine learning models to predict a highly relevant phenomenon for drug access in modern BC oncology. Starting with an explainable model and subsequently integrating it with an ensemble approach enabled us to enhance performance while maintaining transparency, explainability, and intelligibility.
期刊介绍:
ESMO Open is the online-only, open access journal of the European Society for Medical Oncology (ESMO). It is a peer-reviewed publication dedicated to sharing high-quality medical research and educational materials from various fields of oncology. The journal specifically focuses on showcasing innovative clinical and translational cancer research.
ESMO Open aims to publish a wide range of research articles covering all aspects of oncology, including experimental studies, translational research, diagnostic advancements, and therapeutic approaches. The content of the journal includes original research articles, insightful reviews, thought-provoking editorials, and correspondence. Moreover, the journal warmly welcomes the submission of phase I trials and meta-analyses. It also showcases reviews from significant ESMO conferences and meetings, as well as publishes important position statements on behalf of ESMO.
Overall, ESMO Open offers a platform for scientists, clinicians, and researchers in the field of oncology to share their valuable insights and contribute to advancing the understanding and treatment of cancer. The journal serves as a source of up-to-date information and fosters collaboration within the oncology community.