Jennyfer Andrea Aldana-Mejía, Victor Pena Ribeiro, Kumudini M Meepagala, Jairo Kenupp Bastos, Samir A Ross
{"title":"巴西红蜂胶的生物活性代谢物:细胞毒性、抗疟疾和抗菌特性。","authors":"Jennyfer Andrea Aldana-Mejía, Victor Pena Ribeiro, Kumudini M Meepagala, Jairo Kenupp Bastos, Samir A Ross","doi":"10.1016/j.fitote.2024.106351","DOIUrl":null,"url":null,"abstract":"<p><p>Brazilian Red Propolis (BRP) is a natural product known for its rich chemical composition and therapeutic potential. This study investigates the phytochemical profile and evaluates the cytotoxic, antiplasmodial, and antimicrobial properties of red propolis extract and its isolated compounds vestitol (1), neovestitol (2), medicarpin (3), 7-O-methylvestitol (4), and oblongifolin B (5). The extract showed selective cytotoxicity against cancer cell lines (IC<sub>50</sub>: 16-39 μg/mL). Compound 3 exhibited a promising cytotoxicity against SK-OV-3 with and IC<sub>50</sub> of 6.65 μM. BRP had moderate antimicrobial effects; however, 3 was effective against Cryptococcus neoformans (IC<sub>50</sub>: 19.29 μM), while 5 was active against Pseudomonas aeruginosa (IC<sub>50</sub>: 15.77 μM). BRP exhibited antiplasmodial activity against Plasmodium falciparum strains D6 and W2 (IC<sub>50</sub>: 13.8 μg/mL and 5.7 μg/mL); also, 4 and 5 had IC<sub>50</sub> concentrations ranging from: 2.99-6.96 μM). Molecular docking for P. falciparum lactate dehydrogenase (PfLDH), suggest that compound 4 has significant interactions with critical residues in the PfLDH active site, such as TYR85, THR97, and ASP53, and falls within optimal ranges for oral bioavailability. These findings highlight the significant bioactive potential of BRP and its compounds, suggesting their potential as therapeutic agents in vitro and in-silico. Further studies are recommended to explore their mechanisms of action and therapeutic applications.</p>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":" ","pages":"106351"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioactive metabolites of Brazilian Red Propolis: Cytotoxic, antimalarial, and antimicrobial properties.\",\"authors\":\"Jennyfer Andrea Aldana-Mejía, Victor Pena Ribeiro, Kumudini M Meepagala, Jairo Kenupp Bastos, Samir A Ross\",\"doi\":\"10.1016/j.fitote.2024.106351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brazilian Red Propolis (BRP) is a natural product known for its rich chemical composition and therapeutic potential. This study investigates the phytochemical profile and evaluates the cytotoxic, antiplasmodial, and antimicrobial properties of red propolis extract and its isolated compounds vestitol (1), neovestitol (2), medicarpin (3), 7-O-methylvestitol (4), and oblongifolin B (5). The extract showed selective cytotoxicity against cancer cell lines (IC<sub>50</sub>: 16-39 μg/mL). Compound 3 exhibited a promising cytotoxicity against SK-OV-3 with and IC<sub>50</sub> of 6.65 μM. BRP had moderate antimicrobial effects; however, 3 was effective against Cryptococcus neoformans (IC<sub>50</sub>: 19.29 μM), while 5 was active against Pseudomonas aeruginosa (IC<sub>50</sub>: 15.77 μM). BRP exhibited antiplasmodial activity against Plasmodium falciparum strains D6 and W2 (IC<sub>50</sub>: 13.8 μg/mL and 5.7 μg/mL); also, 4 and 5 had IC<sub>50</sub> concentrations ranging from: 2.99-6.96 μM). Molecular docking for P. falciparum lactate dehydrogenase (PfLDH), suggest that compound 4 has significant interactions with critical residues in the PfLDH active site, such as TYR85, THR97, and ASP53, and falls within optimal ranges for oral bioavailability. These findings highlight the significant bioactive potential of BRP and its compounds, suggesting their potential as therapeutic agents in vitro and in-silico. Further studies are recommended to explore their mechanisms of action and therapeutic applications.</p>\",\"PeriodicalId\":12147,\"journal\":{\"name\":\"Fitoterapia\",\"volume\":\" \",\"pages\":\"106351\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fitoterapia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fitote.2024.106351\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.fitote.2024.106351","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Bioactive metabolites of Brazilian Red Propolis: Cytotoxic, antimalarial, and antimicrobial properties.
Brazilian Red Propolis (BRP) is a natural product known for its rich chemical composition and therapeutic potential. This study investigates the phytochemical profile and evaluates the cytotoxic, antiplasmodial, and antimicrobial properties of red propolis extract and its isolated compounds vestitol (1), neovestitol (2), medicarpin (3), 7-O-methylvestitol (4), and oblongifolin B (5). The extract showed selective cytotoxicity against cancer cell lines (IC50: 16-39 μg/mL). Compound 3 exhibited a promising cytotoxicity against SK-OV-3 with and IC50 of 6.65 μM. BRP had moderate antimicrobial effects; however, 3 was effective against Cryptococcus neoformans (IC50: 19.29 μM), while 5 was active against Pseudomonas aeruginosa (IC50: 15.77 μM). BRP exhibited antiplasmodial activity against Plasmodium falciparum strains D6 and W2 (IC50: 13.8 μg/mL and 5.7 μg/mL); also, 4 and 5 had IC50 concentrations ranging from: 2.99-6.96 μM). Molecular docking for P. falciparum lactate dehydrogenase (PfLDH), suggest that compound 4 has significant interactions with critical residues in the PfLDH active site, such as TYR85, THR97, and ASP53, and falls within optimal ranges for oral bioavailability. These findings highlight the significant bioactive potential of BRP and its compounds, suggesting their potential as therapeutic agents in vitro and in-silico. Further studies are recommended to explore their mechanisms of action and therapeutic applications.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.