{"title":"动物双歧杆菌亚种作用机理的研究。乳酸F1-3-2通过TMA-TMAO途径调节胆汁酸代谢改善动脉粥样硬化。","authors":"Xiumei Zheng, Zhe Zhang, Tianhu Shan, Maozhen Zhao, Haiyan Lu, Lanwei Zhang, Xi Liang","doi":"10.1007/s12602-024-10417-x","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is a major cause of cardiovascular disease (CVD). The trimethylamine (TMA)-trimethylamine N-oxide (TMAO) pathway is a key crossover pathway highly associated with diet, gut microbiome, and atherosclerosis. The Bifidobacterium animalis subsp. lactis F1-3-2 (Bif. animalis F1-3-2, No. CCTCCM2020832) was screened through in vitro and in vivo experiments in the early stage of this study with excellent lipid-lowering and anti-inflammatory function. By building an atherosclerosis model and focusing on TMAO, the specific mechanism of Bif. animalis F1-3-2 to improve atherosclerosis was explored. The study found that Bif. animalis F1-3-2 effectively improved the accumulation of aortic plaque in atherosclerotic mice. The strain improved lipid metabolism in serum and liver. It decreased the serum TMA and TMAO, regulated bile acid composition, participated in the farnesoid X receptor (FXR) pathway to improve lipid metabolism, and further reduced the aortic macrophage foam cell accumulation. In addition, the strain could improve the structure of the intestinal microbiome and reduce the proportion of Firmicutes and Bacteroidetes. The abundance of Turicibacter, Clostridium sensu stricto_1, and Romboutsia was reduced at the genus level. The differential microbiota is highly correlated with bile acid metabolism, which is speculated to be involved in ameliorating atherosclerotic lipid metabolism disorders.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Mechanism of Bifidobacterium animalis subsp. lactis F1-3-2 Regulating Bile Acid Metabolism Through TMA-TMAO Pathway to Improve Atherosclerosis.\",\"authors\":\"Xiumei Zheng, Zhe Zhang, Tianhu Shan, Maozhen Zhao, Haiyan Lu, Lanwei Zhang, Xi Liang\",\"doi\":\"10.1007/s12602-024-10417-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atherosclerosis is a major cause of cardiovascular disease (CVD). The trimethylamine (TMA)-trimethylamine N-oxide (TMAO) pathway is a key crossover pathway highly associated with diet, gut microbiome, and atherosclerosis. The Bifidobacterium animalis subsp. lactis F1-3-2 (Bif. animalis F1-3-2, No. CCTCCM2020832) was screened through in vitro and in vivo experiments in the early stage of this study with excellent lipid-lowering and anti-inflammatory function. By building an atherosclerosis model and focusing on TMAO, the specific mechanism of Bif. animalis F1-3-2 to improve atherosclerosis was explored. The study found that Bif. animalis F1-3-2 effectively improved the accumulation of aortic plaque in atherosclerotic mice. The strain improved lipid metabolism in serum and liver. It decreased the serum TMA and TMAO, regulated bile acid composition, participated in the farnesoid X receptor (FXR) pathway to improve lipid metabolism, and further reduced the aortic macrophage foam cell accumulation. In addition, the strain could improve the structure of the intestinal microbiome and reduce the proportion of Firmicutes and Bacteroidetes. The abundance of Turicibacter, Clostridium sensu stricto_1, and Romboutsia was reduced at the genus level. The differential microbiota is highly correlated with bile acid metabolism, which is speculated to be involved in ameliorating atherosclerotic lipid metabolism disorders.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10417-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10417-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
动脉粥样硬化是心血管疾病(CVD)的主要原因。三甲胺(TMA)-三甲胺n -氧化物(TMAO)途径是与饮食、肠道微生物群和动脉粥样硬化高度相关的关键交叉途径。动物双歧杆菌亚种。lactis F1-3-2 (Bif;动物学家F1-3-2号CCTCCM2020832)在本研究前期通过体外和体内实验筛选,具有良好的降脂抗炎功能。通过建立动脉粥样硬化模型,以TMAO为重点,探讨Bif的具体机制。探讨动物F1-3-2改善动脉粥样硬化的作用。研究发现。animalis F1-3-2有效改善动脉粥样硬化小鼠主动脉斑块的积累。菌株改善了血清和肝脏的脂质代谢。降低血清TMA和TMAO,调节胆汁酸组成,参与farnesoid X receptor (FXR)通路改善脂质代谢,进一步减少主动脉巨噬细胞泡沫细胞积聚。此外,菌株还能改善肠道菌群结构,降低厚壁菌门和拟杆菌门的比例。在属水平上,Turicibacter、Clostridium sensu stricto_1和Romboutsia的丰度降低。不同的微生物群与胆汁酸代谢高度相关,推测胆汁酸代谢可能参与改善动脉粥样硬化性脂质代谢紊乱。
Study on the Mechanism of Bifidobacterium animalis subsp. lactis F1-3-2 Regulating Bile Acid Metabolism Through TMA-TMAO Pathway to Improve Atherosclerosis.
Atherosclerosis is a major cause of cardiovascular disease (CVD). The trimethylamine (TMA)-trimethylamine N-oxide (TMAO) pathway is a key crossover pathway highly associated with diet, gut microbiome, and atherosclerosis. The Bifidobacterium animalis subsp. lactis F1-3-2 (Bif. animalis F1-3-2, No. CCTCCM2020832) was screened through in vitro and in vivo experiments in the early stage of this study with excellent lipid-lowering and anti-inflammatory function. By building an atherosclerosis model and focusing on TMAO, the specific mechanism of Bif. animalis F1-3-2 to improve atherosclerosis was explored. The study found that Bif. animalis F1-3-2 effectively improved the accumulation of aortic plaque in atherosclerotic mice. The strain improved lipid metabolism in serum and liver. It decreased the serum TMA and TMAO, regulated bile acid composition, participated in the farnesoid X receptor (FXR) pathway to improve lipid metabolism, and further reduced the aortic macrophage foam cell accumulation. In addition, the strain could improve the structure of the intestinal microbiome and reduce the proportion of Firmicutes and Bacteroidetes. The abundance of Turicibacter, Clostridium sensu stricto_1, and Romboutsia was reduced at the genus level. The differential microbiota is highly correlated with bile acid metabolism, which is speculated to be involved in ameliorating atherosclerotic lipid metabolism disorders.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.