{"title":"基于深度学习语义分割集成模型的心胸比自动测量。","authors":"Jiajun Feng, Yuqian Huang, Zhenbin Hu, Junjie Guo","doi":"10.1007/s11517-024-03263-0","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to investigate the efficacy of the semantic segmentation model in predicting cardiothoracic ratio (CTR) and heart enlargement and compare its consistency with the reference standard. A total of 650 consecutive chest radiographs from our center and 756 public datasets were retrospectively included to develop a segmentation model. Three semantic segmentation models were used to segment the heart and lungs. A soft voting integration method was used to improve the segmentation accuracy and measure CTR automatically. Bland-Altman and Pearson's correlation analyses were used to compare the consistency and correlation between CTR automated measurements and reference standards. CTR automated measurements were compared with reference standard using the Wilcoxon signed-rank test. The diagnostic efficacy of the model for heart enlargement was evaluated using the AUC. The soft voting integration model was strongly correlated (r = 0.98, P < 0.001) and consistent (average standard deviation of 0.0048 cm/s) with the reference standard. No statistical difference between CTR automated measurement and reference standard in healthy subjects, pneumothorax, pleural effusion, and lung mass patients (P > 0.05). In the external test data, the accuracy, sensitivity, specificity, and AUC in determining heart enlargement were 96.0%, 79.5%, 99.1%, and 0.988, respectively. The deep learning method was calculated faster per chest radiograph than the average time manually calculated by the radiologist (about 2 s vs 25.75 ± 4.35 s, respectively, P < 0.001). This study provides a semantic segmentation integration model of chest radiographs to measure CTR and determine heart enlargement with chest structure changes due to different chest diseases effectively, faster, and accurately. The development of the automated segmentation integration model is helpful in improving the consistency of CTR measurement, reducing the workload of radiologists, and improving their work efficiency.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated measurement of cardiothoracic ratio based on semantic segmentation integration model using deep learning.\",\"authors\":\"Jiajun Feng, Yuqian Huang, Zhenbin Hu, Junjie Guo\",\"doi\":\"10.1007/s11517-024-03263-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study is to investigate the efficacy of the semantic segmentation model in predicting cardiothoracic ratio (CTR) and heart enlargement and compare its consistency with the reference standard. A total of 650 consecutive chest radiographs from our center and 756 public datasets were retrospectively included to develop a segmentation model. Three semantic segmentation models were used to segment the heart and lungs. A soft voting integration method was used to improve the segmentation accuracy and measure CTR automatically. Bland-Altman and Pearson's correlation analyses were used to compare the consistency and correlation between CTR automated measurements and reference standards. CTR automated measurements were compared with reference standard using the Wilcoxon signed-rank test. The diagnostic efficacy of the model for heart enlargement was evaluated using the AUC. The soft voting integration model was strongly correlated (r = 0.98, P < 0.001) and consistent (average standard deviation of 0.0048 cm/s) with the reference standard. No statistical difference between CTR automated measurement and reference standard in healthy subjects, pneumothorax, pleural effusion, and lung mass patients (P > 0.05). In the external test data, the accuracy, sensitivity, specificity, and AUC in determining heart enlargement were 96.0%, 79.5%, 99.1%, and 0.988, respectively. The deep learning method was calculated faster per chest radiograph than the average time manually calculated by the radiologist (about 2 s vs 25.75 ± 4.35 s, respectively, P < 0.001). This study provides a semantic segmentation integration model of chest radiographs to measure CTR and determine heart enlargement with chest structure changes due to different chest diseases effectively, faster, and accurately. The development of the automated segmentation integration model is helpful in improving the consistency of CTR measurement, reducing the workload of radiologists, and improving their work efficiency.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03263-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03263-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本研究的目的是探讨语义分割模型在预测心胸比(CTR)和心脏扩张方面的有效性,并比较其与参考标准的一致性。我们回顾性地纳入了来自本中心的650张连续胸片和756个公共数据集,以建立一个分割模型。使用三种语义分割模型对心脏和肺进行分割。采用软投票积分法提高分割精度,自动测量点击率。使用Bland-Altman和Pearson相关分析来比较CTR自动测量值与参考标准之间的一致性和相关性。CTR自动测量值与参考标准值采用Wilcoxon符号秩检验进行比较。采用AUC评价模型对心脏增大的诊断效果。软投票积分模型与强相关(r = 0.98, P 0.05)。在外部检测资料中,测定心脏增大的准确性为96.0%,灵敏度为79.5%,特异性为99.1%,AUC为0.988。与放射科医生人工计算的平均时间相比,深度学习方法计算每张胸片的时间要快(分别为2秒vs 25.75±4.35秒)
Automated measurement of cardiothoracic ratio based on semantic segmentation integration model using deep learning.
The objective of this study is to investigate the efficacy of the semantic segmentation model in predicting cardiothoracic ratio (CTR) and heart enlargement and compare its consistency with the reference standard. A total of 650 consecutive chest radiographs from our center and 756 public datasets were retrospectively included to develop a segmentation model. Three semantic segmentation models were used to segment the heart and lungs. A soft voting integration method was used to improve the segmentation accuracy and measure CTR automatically. Bland-Altman and Pearson's correlation analyses were used to compare the consistency and correlation between CTR automated measurements and reference standards. CTR automated measurements were compared with reference standard using the Wilcoxon signed-rank test. The diagnostic efficacy of the model for heart enlargement was evaluated using the AUC. The soft voting integration model was strongly correlated (r = 0.98, P < 0.001) and consistent (average standard deviation of 0.0048 cm/s) with the reference standard. No statistical difference between CTR automated measurement and reference standard in healthy subjects, pneumothorax, pleural effusion, and lung mass patients (P > 0.05). In the external test data, the accuracy, sensitivity, specificity, and AUC in determining heart enlargement were 96.0%, 79.5%, 99.1%, and 0.988, respectively. The deep learning method was calculated faster per chest radiograph than the average time manually calculated by the radiologist (about 2 s vs 25.75 ± 4.35 s, respectively, P < 0.001). This study provides a semantic segmentation integration model of chest radiographs to measure CTR and determine heart enlargement with chest structure changes due to different chest diseases effectively, faster, and accurately. The development of the automated segmentation integration model is helpful in improving the consistency of CTR measurement, reducing the workload of radiologists, and improving their work efficiency.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).