[甲型流感和SARS-CoV-2病毒的分子离子通道阻滞剂]。

Yu N Vorobjev
{"title":"[甲型流感和SARS-CoV-2病毒的分子离子通道阻滞剂]。","authors":"Yu N Vorobjev","doi":"10.31857/S0026898424040125, EDN: IMBPHX","DOIUrl":null,"url":null,"abstract":"<p><p>Molecules were proposed to block the functional cycles of the influenza virus A and SARS-CoV- 2. The blocker molecules efficiently bind inside the M2 and E channels of influenza A and SARS-CoV-2 viruses and block diffusion of H^(+)/K^(+) ions, thus distorting the virus functional cycle. A family of positively charged (+2 e.u.) molecular blockers of H^(+)/K^(+) ion diffusion through the M2 and E channels was proposed. The blocker molecules were diazabicyclooctane (DABCO) derivatives and were investigated for affinity for the M2 and E channels. Thermal dynamics of native and mutant channel structures and blocker binding were modeled by exhaustive docking. Binding energy calculations revealed within-channel, blocking, and extrachannel binding sites in the M2 and E channel proteins. Blocker molecules with higher affinity for the blocking sites were proposed. The most probable amino acid mutations the M2 and E channels were considered, the efficiency of channel blocking was analyzed, and optimal structures were assumed for the blocker molecules.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 4","pages":"665-680"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Molecular Ion Channel Blockers of Influenza A and SARS-CoV-2 Viruses].\",\"authors\":\"Yu N Vorobjev\",\"doi\":\"10.31857/S0026898424040125, EDN: IMBPHX\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecules were proposed to block the functional cycles of the influenza virus A and SARS-CoV- 2. The blocker molecules efficiently bind inside the M2 and E channels of influenza A and SARS-CoV-2 viruses and block diffusion of H^(+)/K^(+) ions, thus distorting the virus functional cycle. A family of positively charged (+2 e.u.) molecular blockers of H^(+)/K^(+) ion diffusion through the M2 and E channels was proposed. The blocker molecules were diazabicyclooctane (DABCO) derivatives and were investigated for affinity for the M2 and E channels. Thermal dynamics of native and mutant channel structures and blocker binding were modeled by exhaustive docking. Binding energy calculations revealed within-channel, blocking, and extrachannel binding sites in the M2 and E channel proteins. Blocker molecules with higher affinity for the blocking sites were proposed. The most probable amino acid mutations the M2 and E channels were considered, the efficiency of channel blocking was analyzed, and optimal structures were assumed for the blocker molecules.</p>\",\"PeriodicalId\":39818,\"journal\":{\"name\":\"Molekulyarnaya Biologiya\",\"volume\":\"58 4\",\"pages\":\"665-680\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molekulyarnaya Biologiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0026898424040125, EDN: IMBPHX\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424040125, EDN: IMBPHX","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

提出了阻断甲型流感病毒和SARS-CoV- 2功能周期的分子。阻滞剂分子有效结合甲型流感病毒和SARS-CoV-2病毒的M2和E通道内,阻断H^(+)/K^(+)离子的扩散,从而扭曲病毒的功能周期。提出了一种带正电荷(+2 e.u)的分子阻滞剂,可阻止H^(+)/K^(+)离子通过M2和E通道扩散。阻断剂分子是重氮杂环辛烷(DABCO)衍生物,并研究了其对M2和E通道的亲和力。通过穷极对接,模拟了原生通道和突变通道结构的热动力学和阻滞剂的结合。结合能计算揭示了M2和E通道蛋白的通道内、阻断和通道外结合位点。对阻断位点具有较高亲和力的阻断分子被提出。考虑了M2和E通道最可能发生的氨基酸突变,分析了通道阻断效率,并假设了阻断分子的最优结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Molecular Ion Channel Blockers of Influenza A and SARS-CoV-2 Viruses].

Molecules were proposed to block the functional cycles of the influenza virus A and SARS-CoV- 2. The blocker molecules efficiently bind inside the M2 and E channels of influenza A and SARS-CoV-2 viruses and block diffusion of H^(+)/K^(+) ions, thus distorting the virus functional cycle. A family of positively charged (+2 e.u.) molecular blockers of H^(+)/K^(+) ion diffusion through the M2 and E channels was proposed. The blocker molecules were diazabicyclooctane (DABCO) derivatives and were investigated for affinity for the M2 and E channels. Thermal dynamics of native and mutant channel structures and blocker binding were modeled by exhaustive docking. Binding energy calculations revealed within-channel, blocking, and extrachannel binding sites in the M2 and E channel proteins. Blocker molecules with higher affinity for the blocking sites were proposed. The most probable amino acid mutations the M2 and E channels were considered, the efficiency of channel blocking was analyzed, and optimal structures were assumed for the blocker molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
期刊最新文献
[Donor DNA Modification with Cas9 Targeting Sites Improves the Efficiency of MTC34 Knock-in into the CXCR4 Locus]. [How to Shift the Equilibrium of DNA Break Repair in Favor of Homologous Recombination]. [Human eRF1 Translation Regulation]. [Metabolic Profile of Gut Microbiota and Levels of Trefoil Factors in Adults with Different Metabolic Phenotypes of Obesity]. [Methods to Increase the Efficiency of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1