Azam Riahi Zaniani, Ensiyeh Taheri, Ali Fatehizadeh, Fazel Mohammadi-Moghadam, Hossein Movahedian Attar, Bijan Bina, Tejraj M Aminabhavi
{"title":"H2O2/高碘酸盐工艺降解偶氮染料(直接红89)-参数优化及混合物组成评价。","authors":"Azam Riahi Zaniani, Ensiyeh Taheri, Ali Fatehizadeh, Fazel Mohammadi-Moghadam, Hossein Movahedian Attar, Bijan Bina, Tejraj M Aminabhavi","doi":"10.1016/j.chemosphere.2024.143977","DOIUrl":null,"url":null,"abstract":"<p><p>As a fast and efficient process, a periodate (PI)-based advanced oxidation process was used to degrade direct red 89 (DR89), wherein hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was employed to activate PI (H<sub>2</sub>O<sub>2</sub>/PI process) to investigate the effect of operating parameters and mixture composition. The PI was efficiently activated by H<sub>2</sub>O<sub>2</sub> to degrade 67% of DR89 within 1 min. Acidic pH was more favorable to high-efficiency degradation than the basic pH; at pH 3 degradation rate was 94.31%, while it was only 20.92% at pH 11. The degradation rates were further enhanced with increasing H<sub>2</sub>O<sub>2</sub> and PI dose up to certain optimum values, later it decreased which was dependent upon the amount of hydroxyl (<sup>●</sup>OH) and iodyl (IO<sub>3</sub><sup>●</sup>) radicals produced. The quenching experiments suggested that IO<sub>3</sub><sup>●</sup>, <sup>●</sup>OH, <sup>1</sup>O<sub>2,</sub> and O<sub>2</sub><sup>●-</sup> are the predominant reactive species during H<sub>2</sub>O<sub>2</sub>/PI process, while O<sub>2</sub><sup>●-</sup> radicals are the primary precursor of other reactive oxygen species. The results of this study suggested that H<sub>2</sub>O<sub>2</sub>/PI is the efficient and rapid treatment method to degrade persistent organic pollutants (POPs) from polluted wastewater sources.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143977"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of azo dye (direct red 89) using H<sub>2</sub>O<sub>2</sub>/periodate process-parameter optimization and mixture composition evaluation.\",\"authors\":\"Azam Riahi Zaniani, Ensiyeh Taheri, Ali Fatehizadeh, Fazel Mohammadi-Moghadam, Hossein Movahedian Attar, Bijan Bina, Tejraj M Aminabhavi\",\"doi\":\"10.1016/j.chemosphere.2024.143977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a fast and efficient process, a periodate (PI)-based advanced oxidation process was used to degrade direct red 89 (DR89), wherein hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was employed to activate PI (H<sub>2</sub>O<sub>2</sub>/PI process) to investigate the effect of operating parameters and mixture composition. The PI was efficiently activated by H<sub>2</sub>O<sub>2</sub> to degrade 67% of DR89 within 1 min. Acidic pH was more favorable to high-efficiency degradation than the basic pH; at pH 3 degradation rate was 94.31%, while it was only 20.92% at pH 11. The degradation rates were further enhanced with increasing H<sub>2</sub>O<sub>2</sub> and PI dose up to certain optimum values, later it decreased which was dependent upon the amount of hydroxyl (<sup>●</sup>OH) and iodyl (IO<sub>3</sub><sup>●</sup>) radicals produced. The quenching experiments suggested that IO<sub>3</sub><sup>●</sup>, <sup>●</sup>OH, <sup>1</sup>O<sub>2,</sub> and O<sub>2</sub><sup>●-</sup> are the predominant reactive species during H<sub>2</sub>O<sub>2</sub>/PI process, while O<sub>2</sub><sup>●-</sup> radicals are the primary precursor of other reactive oxygen species. The results of this study suggested that H<sub>2</sub>O<sub>2</sub>/PI is the efficient and rapid treatment method to degrade persistent organic pollutants (POPs) from polluted wastewater sources.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\" \",\"pages\":\"143977\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Degradation of azo dye (direct red 89) using H2O2/periodate process-parameter optimization and mixture composition evaluation.
As a fast and efficient process, a periodate (PI)-based advanced oxidation process was used to degrade direct red 89 (DR89), wherein hydrogen peroxide (H2O2) was employed to activate PI (H2O2/PI process) to investigate the effect of operating parameters and mixture composition. The PI was efficiently activated by H2O2 to degrade 67% of DR89 within 1 min. Acidic pH was more favorable to high-efficiency degradation than the basic pH; at pH 3 degradation rate was 94.31%, while it was only 20.92% at pH 11. The degradation rates were further enhanced with increasing H2O2 and PI dose up to certain optimum values, later it decreased which was dependent upon the amount of hydroxyl (●OH) and iodyl (IO3●) radicals produced. The quenching experiments suggested that IO3●, ●OH, 1O2, and O2●- are the predominant reactive species during H2O2/PI process, while O2●- radicals are the primary precursor of other reactive oxygen species. The results of this study suggested that H2O2/PI is the efficient and rapid treatment method to degrade persistent organic pollutants (POPs) from polluted wastewater sources.