Niemann Pick C1胆固醇转运体的失活通过降低质膜上ACE2的丰度来限制SARS-CoV-2进入宿主细胞。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell and Bioscience Pub Date : 2024-12-20 DOI:10.1186/s13578-024-01331-4
Piergiorgio La Rosa, Jessica Tiberi, Enrico Palermo, Roberta Stefanelli, Sofia Maria Luigia Tiano, Sonia Canterini, Mirko Cortese, John Hiscott, Maria Teresa Fiorenza
{"title":"Niemann Pick C1胆固醇转运体的失活通过降低质膜上ACE2的丰度来限制SARS-CoV-2进入宿主细胞。","authors":"Piergiorgio La Rosa, Jessica Tiberi, Enrico Palermo, Roberta Stefanelli, Sofia Maria Luigia Tiano, Sonia Canterini, Mirko Cortese, John Hiscott, Maria Teresa Fiorenza","doi":"10.1186/s13578-024-01331-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway. Because the angiotensin-converting enzyme 2 (ACE2) and type 2 serine transmembrane protease (TMPRSS2), interactors of the SARS-CoV-2 Spike protein also localize to lipid rafts, we sought to investigate the hypothesis that NPC1 inactivation would generate an intrinsically unfavorable barrier to SARS-CoV-2 entry.</p><p><strong>Results: </strong>In this study, we show that inhibition of the cholesterol transporter activity of NPC1 in cells that express both ACE2 and TMPRSS2, considerably reduces SARS-CoV-2 infectivity, evaluated as early as 4 h post-infection. Mechanistically, treatment with NPC1 specific inhibitor U18666A relocalizes ACE2 from the plasma membrane to the autophagosomal/lysosomal compartment, thereby reducing SARS-CoV-2 entry into treated cells. Reduction of viral entry was observed for both fully infectious SARS-CoV-2 virus and with a pseudotyped VSV-Spike-GFP virus. For instance, U18666A-treated Caco-2 cells infected with the pseudotyped VSV-Spike-GFP showed a > threefold and > 40-fold reduction in virus titer when infectivity was measured at 4 h or 24 h post-infection, respectively. A similar effect was observed in CRISP/R-Cas9-edited Caco-2 cells, which were even more resistant to SARS-CoV-2 infection as indicated by a 97% reduction of viral titers.</p><p><strong>Conclusion: </strong>Overall, this study provides compelling evidence that the inhibition of NPC1 cholesterol transporter activity generates a cellular environment that hinders SARS-CoV-2 entry. ACE2 depletion from the plasma membrane appears to play a major role as limiting factor for viral entry.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"148"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662611/pdf/","citationCount":"0","resultStr":"{\"title\":\"The inactivation of the Niemann Pick C1 cholesterol transporter restricts SARS-CoV-2 entry into host cells by decreasing ACE2 abundance at the plasma membrane.\",\"authors\":\"Piergiorgio La Rosa, Jessica Tiberi, Enrico Palermo, Roberta Stefanelli, Sofia Maria Luigia Tiano, Sonia Canterini, Mirko Cortese, John Hiscott, Maria Teresa Fiorenza\",\"doi\":\"10.1186/s13578-024-01331-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway. Because the angiotensin-converting enzyme 2 (ACE2) and type 2 serine transmembrane protease (TMPRSS2), interactors of the SARS-CoV-2 Spike protein also localize to lipid rafts, we sought to investigate the hypothesis that NPC1 inactivation would generate an intrinsically unfavorable barrier to SARS-CoV-2 entry.</p><p><strong>Results: </strong>In this study, we show that inhibition of the cholesterol transporter activity of NPC1 in cells that express both ACE2 and TMPRSS2, considerably reduces SARS-CoV-2 infectivity, evaluated as early as 4 h post-infection. Mechanistically, treatment with NPC1 specific inhibitor U18666A relocalizes ACE2 from the plasma membrane to the autophagosomal/lysosomal compartment, thereby reducing SARS-CoV-2 entry into treated cells. Reduction of viral entry was observed for both fully infectious SARS-CoV-2 virus and with a pseudotyped VSV-Spike-GFP virus. For instance, U18666A-treated Caco-2 cells infected with the pseudotyped VSV-Spike-GFP showed a > threefold and > 40-fold reduction in virus titer when infectivity was measured at 4 h or 24 h post-infection, respectively. A similar effect was observed in CRISP/R-Cas9-edited Caco-2 cells, which were even more resistant to SARS-CoV-2 infection as indicated by a 97% reduction of viral titers.</p><p><strong>Conclusion: </strong>Overall, this study provides compelling evidence that the inhibition of NPC1 cholesterol transporter activity generates a cellular environment that hinders SARS-CoV-2 entry. ACE2 depletion from the plasma membrane appears to play a major role as limiting factor for viral entry.</p>\",\"PeriodicalId\":49095,\"journal\":{\"name\":\"Cell and Bioscience\",\"volume\":\"14 1\",\"pages\":\"148\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Bioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13578-024-01331-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-024-01331-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:Niemann Pick C1 (NPC1)蛋白是一种位于内核/溶酶体(LE/Ly)晚期的细胞内胆固醇转运蛋白,参与内吞胆固醇的动员。NPC1基因的功能缺失突变导致LE/Ly中胆固醇和鞘脂的积累,导致严重致命的NPC1疾病。与NPC1失活相关的细胞改变影响脂筏的完整性和内吞途径。由于血管紧张素转换酶2 (ACE2)和2型丝氨酸跨膜蛋白酶(TMPRSS2), SARS-CoV-2刺突蛋白的相互作用物也定位于脂筏,我们试图调查NPC1失活会对SARS-CoV-2进入产生内在不利屏障的假设。结果:在本研究中,我们发现在同时表达ACE2和TMPRSS2的细胞中抑制NPC1的胆固醇转运体活性,可显著降低SARS-CoV-2的传染性,早在感染后4小时就进行了评估。从机制上讲,用NPC1特异性抑制剂U18666A处理可使ACE2从质膜重新定位到自噬体/溶酶体腔室,从而减少SARS-CoV-2进入处理细胞。在完全感染性的SARS-CoV-2病毒和假型VSV-Spike-GFP病毒中均观察到病毒进入减少。例如,u18666a处理的Caco-2细胞感染假型VSV-Spike-GFP后,在感染后4小时和24小时分别检测病毒滴度降低> 3倍和> 40倍。在CRISP/ r - cas9编辑的Caco-2细胞中观察到类似的效果,其对SARS-CoV-2感染的抵抗力更强,病毒滴度降低了97%。结论:总体而言,本研究提供了令人信服的证据,表明抑制NPC1胆固醇转运蛋白活性可产生阻碍SARS-CoV-2进入的细胞环境。质膜上的ACE2耗竭似乎是病毒进入的主要限制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The inactivation of the Niemann Pick C1 cholesterol transporter restricts SARS-CoV-2 entry into host cells by decreasing ACE2 abundance at the plasma membrane.

Background: The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway. Because the angiotensin-converting enzyme 2 (ACE2) and type 2 serine transmembrane protease (TMPRSS2), interactors of the SARS-CoV-2 Spike protein also localize to lipid rafts, we sought to investigate the hypothesis that NPC1 inactivation would generate an intrinsically unfavorable barrier to SARS-CoV-2 entry.

Results: In this study, we show that inhibition of the cholesterol transporter activity of NPC1 in cells that express both ACE2 and TMPRSS2, considerably reduces SARS-CoV-2 infectivity, evaluated as early as 4 h post-infection. Mechanistically, treatment with NPC1 specific inhibitor U18666A relocalizes ACE2 from the plasma membrane to the autophagosomal/lysosomal compartment, thereby reducing SARS-CoV-2 entry into treated cells. Reduction of viral entry was observed for both fully infectious SARS-CoV-2 virus and with a pseudotyped VSV-Spike-GFP virus. For instance, U18666A-treated Caco-2 cells infected with the pseudotyped VSV-Spike-GFP showed a > threefold and > 40-fold reduction in virus titer when infectivity was measured at 4 h or 24 h post-infection, respectively. A similar effect was observed in CRISP/R-Cas9-edited Caco-2 cells, which were even more resistant to SARS-CoV-2 infection as indicated by a 97% reduction of viral titers.

Conclusion: Overall, this study provides compelling evidence that the inhibition of NPC1 cholesterol transporter activity generates a cellular environment that hinders SARS-CoV-2 entry. ACE2 depletion from the plasma membrane appears to play a major role as limiting factor for viral entry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Bioscience
Cell and Bioscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.70
自引率
0.00%
发文量
187
审稿时长
>12 weeks
期刊介绍: Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.
期刊最新文献
Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids. Comprehensive landscape and oncogenic role of extrachromosomal circular DNA in malignant biliary strictures. TOPBP1 as a potential predictive biomarker for enhanced combinatorial efficacy of olaparib and AZD6738 in PDAC. Plectin, a novel regulator in migration, invasion and adhesion of ovarian cancer. Epsin3 promotes non-small cell lung cancer progression via modulating EGFR stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1