Eeva Terhonen, Tiina Ylioja, Tuija Hytönen, Katri Leino, Linda Mutanen, Markus Melin, Eeva Vaahtera, Suvi Sutela
{"title":"芬兰的新传奇:苏格兰松中sapinea的崛起。","authors":"Eeva Terhonen, Tiina Ylioja, Tuija Hytönen, Katri Leino, Linda Mutanen, Markus Melin, Eeva Vaahtera, Suvi Sutela","doi":"10.1016/j.fgb.2024.103955","DOIUrl":null,"url":null,"abstract":"<p><p>The intensity of fungal virulence is likely to increase in northern forests as climate change alters environmental conditions, favoring pathogen proliferation in existing ecosystems while also facilitating their expansion into new geographic areas. In Finland, Diplodia sapinea, the causal agent of disease called \"Diplodia tip blight\", has emerged as a new pathogen within the past few years. To reveal the current distribution of the novel fungal pathogen, and the effect of temperature and rainfall on its distribution, we utilized citizen science for the detection and collection of symptomatic Scots pine (Pinus sylvestris) shoots. The Finnish culture collection of D. sapinea was initiated using in vitro cultured symptomatic samples, and selected strains were studied for their virulence and disease cycle. Furthermore, the mycobiome of selected symptomatic and asymptomatic Scots pine shoots was studied using amplicon sequencing and the presence of D. sapinea was confirmed with culturing, qPCR, and species-specific PCR. Based on over 500 Scots pine shoots testing positive for D. sapinea, the distribution of this fungal pathogen is concentrated along the coastal areas of Finland, extending up to 200 km inland from the coastline. The observed presence of D. sapinea followed the period of highest average temperatures recorded in Finland in 2023 and was also found to be related to less precipitation. The amplicon sequencing showed that abundance of D. sapinea was higher in the healthy tissues of symptomatic shoots compared to visually healthy shoots. Similarly, the abundance was higher in samples collected from coastal areas in Southwestern Finland, which are the most heavily impacted by this disease. Here, we show that the presence of D. sapinea is more extensive than previously assumed, and lastly illustrate the hypothesized disease cycle of the fungal pathogen in Finland based on observations made in the field from 2021 to 2024 and in vivo and in vitro studies.</p>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":" ","pages":"103955"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New saga in Finland: The rise of Diplodia sapinea in Scots pine.\",\"authors\":\"Eeva Terhonen, Tiina Ylioja, Tuija Hytönen, Katri Leino, Linda Mutanen, Markus Melin, Eeva Vaahtera, Suvi Sutela\",\"doi\":\"10.1016/j.fgb.2024.103955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intensity of fungal virulence is likely to increase in northern forests as climate change alters environmental conditions, favoring pathogen proliferation in existing ecosystems while also facilitating their expansion into new geographic areas. In Finland, Diplodia sapinea, the causal agent of disease called \\\"Diplodia tip blight\\\", has emerged as a new pathogen within the past few years. To reveal the current distribution of the novel fungal pathogen, and the effect of temperature and rainfall on its distribution, we utilized citizen science for the detection and collection of symptomatic Scots pine (Pinus sylvestris) shoots. The Finnish culture collection of D. sapinea was initiated using in vitro cultured symptomatic samples, and selected strains were studied for their virulence and disease cycle. Furthermore, the mycobiome of selected symptomatic and asymptomatic Scots pine shoots was studied using amplicon sequencing and the presence of D. sapinea was confirmed with culturing, qPCR, and species-specific PCR. Based on over 500 Scots pine shoots testing positive for D. sapinea, the distribution of this fungal pathogen is concentrated along the coastal areas of Finland, extending up to 200 km inland from the coastline. The observed presence of D. sapinea followed the period of highest average temperatures recorded in Finland in 2023 and was also found to be related to less precipitation. The amplicon sequencing showed that abundance of D. sapinea was higher in the healthy tissues of symptomatic shoots compared to visually healthy shoots. Similarly, the abundance was higher in samples collected from coastal areas in Southwestern Finland, which are the most heavily impacted by this disease. Here, we show that the presence of D. sapinea is more extensive than previously assumed, and lastly illustrate the hypothesized disease cycle of the fungal pathogen in Finland based on observations made in the field from 2021 to 2024 and in vivo and in vitro studies.</p>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\" \",\"pages\":\"103955\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fgb.2024.103955\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.fgb.2024.103955","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
New saga in Finland: The rise of Diplodia sapinea in Scots pine.
The intensity of fungal virulence is likely to increase in northern forests as climate change alters environmental conditions, favoring pathogen proliferation in existing ecosystems while also facilitating their expansion into new geographic areas. In Finland, Diplodia sapinea, the causal agent of disease called "Diplodia tip blight", has emerged as a new pathogen within the past few years. To reveal the current distribution of the novel fungal pathogen, and the effect of temperature and rainfall on its distribution, we utilized citizen science for the detection and collection of symptomatic Scots pine (Pinus sylvestris) shoots. The Finnish culture collection of D. sapinea was initiated using in vitro cultured symptomatic samples, and selected strains were studied for their virulence and disease cycle. Furthermore, the mycobiome of selected symptomatic and asymptomatic Scots pine shoots was studied using amplicon sequencing and the presence of D. sapinea was confirmed with culturing, qPCR, and species-specific PCR. Based on over 500 Scots pine shoots testing positive for D. sapinea, the distribution of this fungal pathogen is concentrated along the coastal areas of Finland, extending up to 200 km inland from the coastline. The observed presence of D. sapinea followed the period of highest average temperatures recorded in Finland in 2023 and was also found to be related to less precipitation. The amplicon sequencing showed that abundance of D. sapinea was higher in the healthy tissues of symptomatic shoots compared to visually healthy shoots. Similarly, the abundance was higher in samples collected from coastal areas in Southwestern Finland, which are the most heavily impacted by this disease. Here, we show that the presence of D. sapinea is more extensive than previously assumed, and lastly illustrate the hypothesized disease cycle of the fungal pathogen in Finland based on observations made in the field from 2021 to 2024 and in vivo and in vitro studies.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.