养殖环境的异质性增强了集约化养殖中微生物群落的多样性。

IF 4.9 Q1 MICROBIOLOGY Animal microbiome Pub Date : 2024-12-20 DOI:10.1186/s42523-024-00359-8
Roghaieh Ashrafi, Lotta-Riina Sundberg, Pekka Hyvärinen, Anssi Karvonen
{"title":"养殖环境的异质性增强了集约化养殖中微生物群落的多样性。","authors":"Roghaieh Ashrafi, Lotta-Riina Sundberg, Pekka Hyvärinen, Anssi Karvonen","doi":"10.1186/s42523-024-00359-8","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneity of the rearing environment in farmed animals can improve welfare and stocking success by enhancing natural behaviours, reducing stress, and decreasing pathogen occurrence. Although microbial diversity is often associated with well-being, their direct and indirect effects on health of farmed animals remain underexplored. We examined the impact of structural heterogeneity of aquaculture tanks on microbial communities in tank biofilm and fish gut microbiome. Enrichment (stones and shelters) significantly promoted microbial diversity and community homogeneity in tank biofilm. However, diversity of gut microbiome did not depend on rearing treatment or microbial composition of the environment. Fish in enriched tanks exhibited greater compositional variation in gut microbiome than those in standard tanks. Tanks without enrichments had higher occurrence of potentially pathogenic bacterial families (Corynebacteriaceae and Staphylococcaceae), while enriched tanks had more beneficial gut microbes (Lactobacillus). Microbial diversity in tank biofilm was negatively associated with fish mortality during a natural epidemic of Flavobacterium columnare, suggesting a protective effect of diverse microbial communities. These findings support environmental enrichment in mitigating disease outbreaks through enhanced microbial diversity, providing important implications for disease control and sustainable health management in aquaculture.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"6 1","pages":"75"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662696/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heterogeneity of the rearing environment enhances diversity of microbial communities in intensive farming.\",\"authors\":\"Roghaieh Ashrafi, Lotta-Riina Sundberg, Pekka Hyvärinen, Anssi Karvonen\",\"doi\":\"10.1186/s42523-024-00359-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterogeneity of the rearing environment in farmed animals can improve welfare and stocking success by enhancing natural behaviours, reducing stress, and decreasing pathogen occurrence. Although microbial diversity is often associated with well-being, their direct and indirect effects on health of farmed animals remain underexplored. We examined the impact of structural heterogeneity of aquaculture tanks on microbial communities in tank biofilm and fish gut microbiome. Enrichment (stones and shelters) significantly promoted microbial diversity and community homogeneity in tank biofilm. However, diversity of gut microbiome did not depend on rearing treatment or microbial composition of the environment. Fish in enriched tanks exhibited greater compositional variation in gut microbiome than those in standard tanks. Tanks without enrichments had higher occurrence of potentially pathogenic bacterial families (Corynebacteriaceae and Staphylococcaceae), while enriched tanks had more beneficial gut microbes (Lactobacillus). Microbial diversity in tank biofilm was negatively associated with fish mortality during a natural epidemic of Flavobacterium columnare, suggesting a protective effect of diverse microbial communities. These findings support environmental enrichment in mitigating disease outbreaks through enhanced microbial diversity, providing important implications for disease control and sustainable health management in aquaculture.</p>\",\"PeriodicalId\":72201,\"journal\":{\"name\":\"Animal microbiome\",\"volume\":\"6 1\",\"pages\":\"75\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662696/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal microbiome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42523-024-00359-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00359-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

养殖动物饲养环境的异质性可以通过增强自然行为、减少压力和减少病原体发生来提高福利和放养成功率。虽然微生物多样性往往与健康有关,但它们对养殖动物健康的直接和间接影响仍未得到充分探索。研究了水产养殖水箱结构异质性对水箱生物膜微生物群落和鱼类肠道微生物群的影响。富集(石块和遮蔽物)显著促进了池生物膜微生物多样性和群落同质性。然而,肠道微生物组的多样性并不取决于饲养方式或环境的微生物组成。强化池中的鱼肠道微生物组的组成变化比标准池中的鱼更大。未富集的罐中潜在致病菌科(棒状杆菌科和葡萄球菌科)的发生率较高,而富集的罐中有益肠道微生物(乳酸杆菌)的发生率较高。在柱状黄杆菌自然流行期间,水箱生物膜中的微生物多样性与鱼类死亡率呈负相关,表明微生物群落多样性具有保护作用。这些发现支持环境富集通过增强微生物多样性来减轻疾病暴发,为水产养殖业的疾病控制和可持续健康管理提供重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneity of the rearing environment enhances diversity of microbial communities in intensive farming.

Heterogeneity of the rearing environment in farmed animals can improve welfare and stocking success by enhancing natural behaviours, reducing stress, and decreasing pathogen occurrence. Although microbial diversity is often associated with well-being, their direct and indirect effects on health of farmed animals remain underexplored. We examined the impact of structural heterogeneity of aquaculture tanks on microbial communities in tank biofilm and fish gut microbiome. Enrichment (stones and shelters) significantly promoted microbial diversity and community homogeneity in tank biofilm. However, diversity of gut microbiome did not depend on rearing treatment or microbial composition of the environment. Fish in enriched tanks exhibited greater compositional variation in gut microbiome than those in standard tanks. Tanks without enrichments had higher occurrence of potentially pathogenic bacterial families (Corynebacteriaceae and Staphylococcaceae), while enriched tanks had more beneficial gut microbes (Lactobacillus). Microbial diversity in tank biofilm was negatively associated with fish mortality during a natural epidemic of Flavobacterium columnare, suggesting a protective effect of diverse microbial communities. These findings support environmental enrichment in mitigating disease outbreaks through enhanced microbial diversity, providing important implications for disease control and sustainable health management in aquaculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Dynamic development of gut microbiota and metabolism during and after weaning of kittens. Nasal microbial diversity is associated with survival in piglets infected by a highly virulent PRRSV-1 strain. Probiotic administration aggravates dextran sulfate sodium salt-induced inflammation and intestinal epithelium disruption in weaned pig. Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano. The Bacterial and pathogenic landscape of African buffalo (Syncerus caffer) whole blood and serum from Kenya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1