辐射输运方程的碰撞展开:分析结果和数值模拟

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-12-10 DOI:10.1016/j.jqsrt.2024.109311
Vadim A. Markel , Manabu Machida , John C. Schotland
{"title":"辐射输运方程的碰撞展开:分析结果和数值模拟","authors":"Vadim A. Markel ,&nbsp;Manabu Machida ,&nbsp;John C. Schotland","doi":"10.1016/j.jqsrt.2024.109311","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the collision expansion of the Green’s function of the radiative transport equation (RTE) in an infinite medium. Analytical expressions in terms of quadratures of the most simple form are given for all orders of the expansion. Singularities of the Green’s function are considered in detail. While it is well known that the zeroth and first terms in the expansion are singular (and proportional to delta functions), we show that the second order term contains a logarithmic singularity. All higher-order terms are regular. We further establish a relation between the Green’s function and the signal measured by a collimated detector. In the presence of singularities, this relation is not always obvious and, at second order, it cannot be stated in a form that is independent of the acceptance angle of the detector. We also consider the density and energy current. Theoretical results are supported by Monte-Carlo simulations.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"333 ","pages":"Article 109311"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collision expansion for the radiative transport equation: Analytical results and numerical simulations\",\"authors\":\"Vadim A. Markel ,&nbsp;Manabu Machida ,&nbsp;John C. Schotland\",\"doi\":\"10.1016/j.jqsrt.2024.109311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the collision expansion of the Green’s function of the radiative transport equation (RTE) in an infinite medium. Analytical expressions in terms of quadratures of the most simple form are given for all orders of the expansion. Singularities of the Green’s function are considered in detail. While it is well known that the zeroth and first terms in the expansion are singular (and proportional to delta functions), we show that the second order term contains a logarithmic singularity. All higher-order terms are regular. We further establish a relation between the Green’s function and the signal measured by a collimated detector. In the presence of singularities, this relation is not always obvious and, at second order, it cannot be stated in a form that is independent of the acceptance angle of the detector. We also consider the density and energy current. Theoretical results are supported by Monte-Carlo simulations.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"333 \",\"pages\":\"Article 109311\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324004187\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324004187","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了辐射输运方程(RTE)的格林函数在无限介质中的碰撞展开。对于展开式的所有阶,给出了最简单形式的正交解析表达式。详细讨论了格林函数的奇异性。众所周知,展开式中的第0项和第1项是奇异的(并且与δ函数成正比),我们证明了第2项包含对数奇异性。所有高阶项都是正则的。我们进一步建立了格林函数与准直探测器测量信号之间的关系。在奇点存在的情况下,这种关系并不总是明显的,而且在二阶情况下,它不能以一种与检测器的接受角无关的形式来表述。我们还考虑了密度和能量电流。理论结果得到了蒙特卡罗模拟的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collision expansion for the radiative transport equation: Analytical results and numerical simulations
We consider the collision expansion of the Green’s function of the radiative transport equation (RTE) in an infinite medium. Analytical expressions in terms of quadratures of the most simple form are given for all orders of the expansion. Singularities of the Green’s function are considered in detail. While it is well known that the zeroth and first terms in the expansion are singular (and proportional to delta functions), we show that the second order term contains a logarithmic singularity. All higher-order terms are regular. We further establish a relation between the Green’s function and the signal measured by a collimated detector. In the presence of singularities, this relation is not always obvious and, at second order, it cannot be stated in a form that is independent of the acceptance angle of the detector. We also consider the density and energy current. Theoretical results are supported by Monte-Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Theoretical study on ground-state hyperfine structure for boron-like ions with 6 ≤ Z ≤ 36 Study on the Himawari-8 aerosol products and aerosol types under the environmental pollution in selected regions of Asia Diffraction Decomposition Order Method for Solving the Vector Radiative Transfer Equation in the Multi-Layer Atmosphere Estimation of TOA flux and radiance based on the angular distribution of aerosol light scattering measurements Exploring the impact of rainfall intensity on the attenuation-rainfall relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1