{"title":"基于瞬态电流法的氮化镓高电子迁移率晶体管陷阱定位与应力退化分析","authors":"Qian Wen;Lixing Zhou;Xianwei Meng;Shiwei Feng;Yamin Zhang","doi":"10.1109/TDMR.2024.3495987","DOIUrl":null,"url":null,"abstract":"In this paper, the carrier trapping behavior and electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) under different bias conditions are studied based on the transient current. By considering the transient drain current of HEMTs at different temperatures, three trapping mechanisms are identified: (1) charge trapping in the AlGaN barrier layer, in the gate-drain region near the two-dimensional electron gas (2DEG) channel; (2) charge trapping in the GaN layer, in the gate-drain region near the gate; and (3) charge trapping on the surface of the AlGaN layer, in the gate-drain region near the gate. The influences of the source-gate and drain-gate voltages on trapping behavior are analyzed to further elucidate the trap locations. The experimental results show that charge capture is mainly affected by the drain-gate voltage. High electric field stress affects the local structure order inside the device, thus affecting the charge escape rate. The threshold voltage shift is mainly affected by the surface trap of the AlGaN layer near the gate.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"624-630"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trap Location and Stress Degradation Analysis of GaN High Electron Mobility Transistors Based on the Transient Current Method\",\"authors\":\"Qian Wen;Lixing Zhou;Xianwei Meng;Shiwei Feng;Yamin Zhang\",\"doi\":\"10.1109/TDMR.2024.3495987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the carrier trapping behavior and electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) under different bias conditions are studied based on the transient current. By considering the transient drain current of HEMTs at different temperatures, three trapping mechanisms are identified: (1) charge trapping in the AlGaN barrier layer, in the gate-drain region near the two-dimensional electron gas (2DEG) channel; (2) charge trapping in the GaN layer, in the gate-drain region near the gate; and (3) charge trapping on the surface of the AlGaN layer, in the gate-drain region near the gate. The influences of the source-gate and drain-gate voltages on trapping behavior are analyzed to further elucidate the trap locations. The experimental results show that charge capture is mainly affected by the drain-gate voltage. High electric field stress affects the local structure order inside the device, thus affecting the charge escape rate. The threshold voltage shift is mainly affected by the surface trap of the AlGaN layer near the gate.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"24 4\",\"pages\":\"624-630\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750308/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750308/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Trap Location and Stress Degradation Analysis of GaN High Electron Mobility Transistors Based on the Transient Current Method
In this paper, the carrier trapping behavior and electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) under different bias conditions are studied based on the transient current. By considering the transient drain current of HEMTs at different temperatures, three trapping mechanisms are identified: (1) charge trapping in the AlGaN barrier layer, in the gate-drain region near the two-dimensional electron gas (2DEG) channel; (2) charge trapping in the GaN layer, in the gate-drain region near the gate; and (3) charge trapping on the surface of the AlGaN layer, in the gate-drain region near the gate. The influences of the source-gate and drain-gate voltages on trapping behavior are analyzed to further elucidate the trap locations. The experimental results show that charge capture is mainly affected by the drain-gate voltage. High electric field stress affects the local structure order inside the device, thus affecting the charge escape rate. The threshold voltage shift is mainly affected by the surface trap of the AlGaN layer near the gate.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.