古巴Boca de Jaruco油田分离细菌的环境适应性及生物表面活性剂的生产

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2024-12-24 DOI:10.1007/s12517-024-12130-z
Liliya Biktasheva, Alexander Gordeev, Thais Hernández, Polina Galitskaya, Svetlana Selivanovskaya
{"title":"古巴Boca de Jaruco油田分离细菌的环境适应性及生物表面活性剂的生产","authors":"Liliya Biktasheva,&nbsp;Alexander Gordeev,&nbsp;Thais Hernández,&nbsp;Polina Galitskaya,&nbsp;Svetlana Selivanovskaya","doi":"10.1007/s12517-024-12130-z","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental protection requirements and the need to increase the proportion of oil recovered by secondary methods have led to the rise in popularity of microbial enhanced oil recovery (MEOR) techniques. Usually, MEOR requires the use of indigenous strains of microorganisms residing in wells, as they are adapted to local conditions. However, for some wells and fields, such as the Boca de Jaruco field in Cuba, information about the oilfield microorganisms and their properties is extremely limited. One of the properties crucial for the successful implementation of MEOR in fields is the ability of indigenous strains to produce biosurfactants. The aim of the present study is to evaluate the ability of six bacterial isolates obtained from the Boca de Jaruco field in Cuba to produce biosurfactants. The isolates capable of utilizing oil as their sole carbon source were identified as <i>Bacillus subtilis</i> (strains CC21, CC23, CC31, and CC32), <i>Bacillus licheniformis</i> (strain CC33), and <i>Aeromonas veronii</i> (strain CC22). It was determined that all isolates can tolerate temperatures between 30 and 60 °C, salinity ranging from 0.5 to 10.0% NaCl, and pH levels between 6 and 9. Regarding their ability to produce biosurfactants, assessed using the drop collapse method, oil-spreading method, emulsification activity test, and surface tension measurement, the isolates ranked as follows: <i>A. veronii</i> CC22 &gt; <i>B. subtilis</i> CC21 = <i>B. subtilis</i> CC31 &gt; <i>B. subtilis</i> CC23 = <i>B. subtilis</i> CC32 &gt; <i>B. licheniformis</i> CC33. The biosurfactants produced were stable in the presence of 1.7 to 20.0% NaCl, irrespective of temperature (30 or 70 °C). However, substituting 20% of the NaCl with CaCl<sub>2</sub> resulted in destabilization of the biosurfactants produced by all investigated isolates, with destabilization levels averaging up to 32% at 70 °C.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental adaptability and biosurfactant production of bacterial isolates from the Boca de Jaruco oil field (Cuba)\",\"authors\":\"Liliya Biktasheva,&nbsp;Alexander Gordeev,&nbsp;Thais Hernández,&nbsp;Polina Galitskaya,&nbsp;Svetlana Selivanovskaya\",\"doi\":\"10.1007/s12517-024-12130-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmental protection requirements and the need to increase the proportion of oil recovered by secondary methods have led to the rise in popularity of microbial enhanced oil recovery (MEOR) techniques. Usually, MEOR requires the use of indigenous strains of microorganisms residing in wells, as they are adapted to local conditions. However, for some wells and fields, such as the Boca de Jaruco field in Cuba, information about the oilfield microorganisms and their properties is extremely limited. One of the properties crucial for the successful implementation of MEOR in fields is the ability of indigenous strains to produce biosurfactants. The aim of the present study is to evaluate the ability of six bacterial isolates obtained from the Boca de Jaruco field in Cuba to produce biosurfactants. The isolates capable of utilizing oil as their sole carbon source were identified as <i>Bacillus subtilis</i> (strains CC21, CC23, CC31, and CC32), <i>Bacillus licheniformis</i> (strain CC33), and <i>Aeromonas veronii</i> (strain CC22). It was determined that all isolates can tolerate temperatures between 30 and 60 °C, salinity ranging from 0.5 to 10.0% NaCl, and pH levels between 6 and 9. Regarding their ability to produce biosurfactants, assessed using the drop collapse method, oil-spreading method, emulsification activity test, and surface tension measurement, the isolates ranked as follows: <i>A. veronii</i> CC22 &gt; <i>B. subtilis</i> CC21 = <i>B. subtilis</i> CC31 &gt; <i>B. subtilis</i> CC23 = <i>B. subtilis</i> CC32 &gt; <i>B. licheniformis</i> CC33. The biosurfactants produced were stable in the presence of 1.7 to 20.0% NaCl, irrespective of temperature (30 or 70 °C). However, substituting 20% of the NaCl with CaCl<sub>2</sub> resulted in destabilization of the biosurfactants produced by all investigated isolates, with destabilization levels averaging up to 32% at 70 °C.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12130-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12130-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

环境保护的要求和提高二次采油比例的需求导致了微生物提高采油(MEOR)技术的普及。通常,MEOR需要使用居住在井中的本地微生物菌株,因为它们适应当地条件。然而,对于一些井和油田,如古巴的Boca de Jaruco油田,关于油田微生物及其性质的信息非常有限。在田间成功实施MEOR的关键特性之一是本地菌株生产生物表面活性剂的能力。本研究的目的是评价从古巴Boca de Jaruco油田获得的六种细菌分离株生产生物表面活性剂的能力。能够利用油脂作为唯一碳源的分离菌为枯草芽孢杆菌(菌株CC21、CC23、CC31和CC32)、地衣芽孢杆菌(菌株CC33)和维罗尼气单胞菌(菌株CC22)。所有菌株均能耐受30 ~ 60℃的温度、0.5 ~ 10.0% NaCl的盐度和6 ~ 9的pH值。通过滴落法、撒油法、乳化活性试验和表面张力测定对其产生生物表面活性剂的能力进行了评价,结果表明:A. veronii CC22 >; B。枯草菌CC21 = B;B.枯草杆菌;枯草菌CC23 = B;B.枯草杆菌;地衣芽CC33。制备的生物表面活性剂在1.7 ~ 20.0% NaCl的存在下是稳定的,与温度(30℃或70℃)无关。然而,用CaCl2代替20%的NaCl会导致所有分离株产生的生物表面活性剂不稳定,在70°C时不稳定水平平均高达32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental adaptability and biosurfactant production of bacterial isolates from the Boca de Jaruco oil field (Cuba)

Environmental protection requirements and the need to increase the proportion of oil recovered by secondary methods have led to the rise in popularity of microbial enhanced oil recovery (MEOR) techniques. Usually, MEOR requires the use of indigenous strains of microorganisms residing in wells, as they are adapted to local conditions. However, for some wells and fields, such as the Boca de Jaruco field in Cuba, information about the oilfield microorganisms and their properties is extremely limited. One of the properties crucial for the successful implementation of MEOR in fields is the ability of indigenous strains to produce biosurfactants. The aim of the present study is to evaluate the ability of six bacterial isolates obtained from the Boca de Jaruco field in Cuba to produce biosurfactants. The isolates capable of utilizing oil as their sole carbon source were identified as Bacillus subtilis (strains CC21, CC23, CC31, and CC32), Bacillus licheniformis (strain CC33), and Aeromonas veronii (strain CC22). It was determined that all isolates can tolerate temperatures between 30 and 60 °C, salinity ranging from 0.5 to 10.0% NaCl, and pH levels between 6 and 9. Regarding their ability to produce biosurfactants, assessed using the drop collapse method, oil-spreading method, emulsification activity test, and surface tension measurement, the isolates ranked as follows: A. veronii CC22 > B. subtilis CC21 = B. subtilis CC31 > B. subtilis CC23 = B. subtilis CC32 > B. licheniformis CC33. The biosurfactants produced were stable in the presence of 1.7 to 20.0% NaCl, irrespective of temperature (30 or 70 °C). However, substituting 20% of the NaCl with CaCl2 resulted in destabilization of the biosurfactants produced by all investigated isolates, with destabilization levels averaging up to 32% at 70 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
Numerical investigation on energy efficiency of horizontal heat pump systems in buildings heating and cooling: case study of Mostaganem (Algeria) Stability analysis of overburden rocks—a new approach An up-to-date perspective on technological accidents triggered by natural events Investigation of radiation shielding parameters of different heavy metallic glass compositions for gamma radiations Microbial dynamics in soil: Impacts on fertility, nutrient cycling, and soil properties for sustainable geosciences—people, planet, and prosperity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1