{"title":"隧道工程流线型芳酯工艺","authors":"Suk Min Kim, Yong Hwan Kim","doi":"10.1038/s44286-024-00149-8","DOIUrl":null,"url":null,"abstract":"The efficient production of high-value aromatic esters in microbial cell factories hinges on optimizing pathway specificity and resource allocation. Now, a study shows that employing both substrate tunnel engineering for enzyme specificity and dynamic metabolic regulation for resource allocation in Escherichia coli enables high-yield production of benzyl benzoate and other aromatic esters.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 12","pages":"728-730"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlined aromatic ester process via tunnel engineering\",\"authors\":\"Suk Min Kim, Yong Hwan Kim\",\"doi\":\"10.1038/s44286-024-00149-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient production of high-value aromatic esters in microbial cell factories hinges on optimizing pathway specificity and resource allocation. Now, a study shows that employing both substrate tunnel engineering for enzyme specificity and dynamic metabolic regulation for resource allocation in Escherichia coli enables high-yield production of benzyl benzoate and other aromatic esters.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 12\",\"pages\":\"728-730\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00149-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00149-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Streamlined aromatic ester process via tunnel engineering
The efficient production of high-value aromatic esters in microbial cell factories hinges on optimizing pathway specificity and resource allocation. Now, a study shows that employing both substrate tunnel engineering for enzyme specificity and dynamic metabolic regulation for resource allocation in Escherichia coli enables high-yield production of benzyl benzoate and other aromatic esters.