水醌介导的电化学碳捕获和释放的原位技术

Kiana Amini, Thomas Cochard, Yan Jing, Jordan D. Sosa, Dawei Xi, Maia Alberts, Michael S. Emanuel, Emily F. Kerr, Roy G. Gordon, Michael J. Aziz
{"title":"水醌介导的电化学碳捕获和释放的原位技术","authors":"Kiana Amini, Thomas Cochard, Yan Jing, Jordan D. Sosa, Dawei Xi, Maia Alberts, Michael S. Emanuel, Emily F. Kerr, Roy G. Gordon, Michael J. Aziz","doi":"10.1038/s44286-024-00153-y","DOIUrl":null,"url":null,"abstract":"Here we elucidate the intricate interplay between the nucleophilicity swing and pH swing mechanisms in aqueous quinone-mediated carbon capture systems, showcasing the critical role of understanding this interplay in the material discovery cycle. This insight prompts the development of two in situ techniques. The first technique employs in situ reference electrodes and capitalizes on discernible voltage signature differences between quinones and quinone–CO2 adducts, allowing for the quantification of the isolated contributions of the two mechanisms. The second method is developed based on our finding that the adduct form of the quinone exhibits a fluorescence emission from an incident light at wavelengths distinct from the fluorescence of the reduced form. Thus, we introduce a noninvasive, in situ approach using fluorescence microscopy, providing the capability to distinguish species with subsecond time resolution at single-digit micrometer resolution. This technique holds promise for studying quinone-based systems for carbon capture and beyond. In an aqueous quinone-mediated system, both pH swing and nucleophilicity swing mechanisms contribute to CO2 capture, but traditional measurement methods report only the combined contributions, without quantifying their relative contributions. Here the authors introduce thermodynamic and kinetic analyses coupled with two in situ experimental techniques to quantify the contributions of these mechanisms.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 12","pages":"774-786"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ techniques for aqueous quinone-mediated electrochemical carbon capture and release\",\"authors\":\"Kiana Amini, Thomas Cochard, Yan Jing, Jordan D. Sosa, Dawei Xi, Maia Alberts, Michael S. Emanuel, Emily F. Kerr, Roy G. Gordon, Michael J. Aziz\",\"doi\":\"10.1038/s44286-024-00153-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we elucidate the intricate interplay between the nucleophilicity swing and pH swing mechanisms in aqueous quinone-mediated carbon capture systems, showcasing the critical role of understanding this interplay in the material discovery cycle. This insight prompts the development of two in situ techniques. The first technique employs in situ reference electrodes and capitalizes on discernible voltage signature differences between quinones and quinone–CO2 adducts, allowing for the quantification of the isolated contributions of the two mechanisms. The second method is developed based on our finding that the adduct form of the quinone exhibits a fluorescence emission from an incident light at wavelengths distinct from the fluorescence of the reduced form. Thus, we introduce a noninvasive, in situ approach using fluorescence microscopy, providing the capability to distinguish species with subsecond time resolution at single-digit micrometer resolution. This technique holds promise for studying quinone-based systems for carbon capture and beyond. In an aqueous quinone-mediated system, both pH swing and nucleophilicity swing mechanisms contribute to CO2 capture, but traditional measurement methods report only the combined contributions, without quantifying their relative contributions. Here the authors introduce thermodynamic and kinetic analyses coupled with two in situ experimental techniques to quantify the contributions of these mechanisms.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 12\",\"pages\":\"774-786\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00153-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00153-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们阐明了在水醌介导的碳捕获系统中亲核性摆动和pH摆动机制之间复杂的相互作用,展示了理解这种相互作用在材料发现周期中的关键作用。这种见解促使了两种原位技术的发展。第一种技术采用原位参考电极,并利用醌和醌- co2加合物之间可识别的电压特征差异,允许对两种机制的孤立贡献进行量化。第二种方法是基于我们的发现,醌的加合形式在入射光的波长上表现出与还原形式的荧光不同的荧光发射。因此,我们引入了一种使用荧光显微镜的非侵入性原位方法,提供了以亚秒时间分辨率在个位数微米分辨率下区分物种的能力。这项技术为研究以醌为基础的碳捕获系统以及其他领域带来了希望。在醌介导的水溶液体系中,pH变化和亲核变化机制都有助于CO2的捕获,但传统的测量方法只报告了两者的综合贡献,而没有量化它们的相对贡献。在这里,作者介绍了热力学和动力学分析,并结合两种原位实验技术来量化这些机制的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In situ techniques for aqueous quinone-mediated electrochemical carbon capture and release
Here we elucidate the intricate interplay between the nucleophilicity swing and pH swing mechanisms in aqueous quinone-mediated carbon capture systems, showcasing the critical role of understanding this interplay in the material discovery cycle. This insight prompts the development of two in situ techniques. The first technique employs in situ reference electrodes and capitalizes on discernible voltage signature differences between quinones and quinone–CO2 adducts, allowing for the quantification of the isolated contributions of the two mechanisms. The second method is developed based on our finding that the adduct form of the quinone exhibits a fluorescence emission from an incident light at wavelengths distinct from the fluorescence of the reduced form. Thus, we introduce a noninvasive, in situ approach using fluorescence microscopy, providing the capability to distinguish species with subsecond time resolution at single-digit micrometer resolution. This technique holds promise for studying quinone-based systems for carbon capture and beyond. In an aqueous quinone-mediated system, both pH swing and nucleophilicity swing mechanisms contribute to CO2 capture, but traditional measurement methods report only the combined contributions, without quantifying their relative contributions. Here the authors introduce thermodynamic and kinetic analyses coupled with two in situ experimental techniques to quantify the contributions of these mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The human element of process design Life at low Reynolds number isn’t such a drag Extracting lithium from salt-lake brine Engineering considerations for next-generation oligonucleotide therapeutics Accelerating climate technologies through the science of scale-up
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1