下一代寡核苷酸疗法的工程考虑

Sasha B. Ebrahimi, Himanshu Bhattacharjee, Sujatha Sonti, Doug Fuerst, Patrick S. Doyle, Yi Lu, Devleena Samanta
{"title":"下一代寡核苷酸疗法的工程考虑","authors":"Sasha B. Ebrahimi, Himanshu Bhattacharjee, Sujatha Sonti, Doug Fuerst, Patrick S. Doyle, Yi Lu, Devleena Samanta","doi":"10.1038/s44286-024-00152-z","DOIUrl":null,"url":null,"abstract":"Oligonucleotide therapeutics are revolutionizing disease treatment by regulating molecules at the genetic level, offering the possibility of treating conditions that were once considered ‘undruggable’. However, delivering oligonucleotides to tissues beyond the liver remains a key challenge, limiting their clinical applications thus far to niche indications. To achieve broader applicability, extensive biomolecular engineering is necessary to enhance the stability, tissue targetability, pharmacokinetics and pharmacodynamics of these structures. The intricate design of these molecules also demands sophisticated process-engineering techniques. Here we provide a collaborative Perspective from academia and industry on the pivotal role of chemical engineering in expanding the use of therapeutic oligonucleotides to treat a wider range of diseases. We discuss how the interplay between biomolecular and process engineering impacts the developability of next-generation oligonucleotide therapeutics as well as their translation from bench to bedside. Oligonucleotide therapeutics have emerged as a promising alternative to traditional small-molecule and protein-based drugs. This Perspective discusses how chemical engineering can broaden oligonucleotide applications to extrahepatic diseases and enable larger-scale production, ultimately allowing treatment of more prevalent conditions than is currently possible.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 12","pages":"741-750"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering considerations for next-generation oligonucleotide therapeutics\",\"authors\":\"Sasha B. Ebrahimi, Himanshu Bhattacharjee, Sujatha Sonti, Doug Fuerst, Patrick S. Doyle, Yi Lu, Devleena Samanta\",\"doi\":\"10.1038/s44286-024-00152-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oligonucleotide therapeutics are revolutionizing disease treatment by regulating molecules at the genetic level, offering the possibility of treating conditions that were once considered ‘undruggable’. However, delivering oligonucleotides to tissues beyond the liver remains a key challenge, limiting their clinical applications thus far to niche indications. To achieve broader applicability, extensive biomolecular engineering is necessary to enhance the stability, tissue targetability, pharmacokinetics and pharmacodynamics of these structures. The intricate design of these molecules also demands sophisticated process-engineering techniques. Here we provide a collaborative Perspective from academia and industry on the pivotal role of chemical engineering in expanding the use of therapeutic oligonucleotides to treat a wider range of diseases. We discuss how the interplay between biomolecular and process engineering impacts the developability of next-generation oligonucleotide therapeutics as well as their translation from bench to bedside. Oligonucleotide therapeutics have emerged as a promising alternative to traditional small-molecule and protein-based drugs. This Perspective discusses how chemical engineering can broaden oligonucleotide applications to extrahepatic diseases and enable larger-scale production, ultimately allowing treatment of more prevalent conditions than is currently possible.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 12\",\"pages\":\"741-750\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00152-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00152-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

寡核苷酸疗法通过在基因水平上调节分子来彻底改变疾病治疗,提供了治疗曾经被认为“无法治疗”的疾病的可能性。然而,将寡核苷酸输送到肝脏以外的组织仍然是一个关键的挑战,限制了它们的临床应用到目前为止的适应症。为了实现更广泛的适用性,需要广泛的生物分子工程来增强这些结构的稳定性、组织靶向性、药代动力学和药效学。这些分子的复杂设计也需要复杂的工艺工程技术。在这里,我们提供了一个从学术界和工业界合作的角度来看,化学工程在扩大治疗性寡核苷酸的使用以治疗更广泛的疾病方面的关键作用。我们讨论了生物分子和工艺工程之间的相互作用如何影响下一代寡核苷酸疗法的可发展性以及它们从实验室到床边的转化。寡核苷酸疗法已经成为传统的小分子和基于蛋白质的药物的有前途的替代品。本展望讨论了化学工程如何扩大寡核苷酸在肝外疾病中的应用,并使其能够大规模生产,最终使其能够治疗比目前可能的更普遍的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering considerations for next-generation oligonucleotide therapeutics
Oligonucleotide therapeutics are revolutionizing disease treatment by regulating molecules at the genetic level, offering the possibility of treating conditions that were once considered ‘undruggable’. However, delivering oligonucleotides to tissues beyond the liver remains a key challenge, limiting their clinical applications thus far to niche indications. To achieve broader applicability, extensive biomolecular engineering is necessary to enhance the stability, tissue targetability, pharmacokinetics and pharmacodynamics of these structures. The intricate design of these molecules also demands sophisticated process-engineering techniques. Here we provide a collaborative Perspective from academia and industry on the pivotal role of chemical engineering in expanding the use of therapeutic oligonucleotides to treat a wider range of diseases. We discuss how the interplay between biomolecular and process engineering impacts the developability of next-generation oligonucleotide therapeutics as well as their translation from bench to bedside. Oligonucleotide therapeutics have emerged as a promising alternative to traditional small-molecule and protein-based drugs. This Perspective discusses how chemical engineering can broaden oligonucleotide applications to extrahepatic diseases and enable larger-scale production, ultimately allowing treatment of more prevalent conditions than is currently possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The human element of process design Life at low Reynolds number isn’t such a drag Extracting lithium from salt-lake brine Engineering considerations for next-generation oligonucleotide therapeutics Accelerating climate technologies through the science of scale-up
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1