口服卵清蛋白改变致敏小鼠的糖代谢:hif -1α-介导的糖酵解上调。

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2024-12-17 DOI:10.1039/D4FO04019H
Fangfang Min, Zhongliang Wang, Huming Shao, Shuangyan Zheng, Youdou Cheng, Wenfeng Liu, Jian Wang, Meini Wang, Yong Wu and Hongbing Chen
{"title":"口服卵清蛋白改变致敏小鼠的糖代谢:hif -1α-介导的糖酵解上调。","authors":"Fangfang Min, Zhongliang Wang, Huming Shao, Shuangyan Zheng, Youdou Cheng, Wenfeng Liu, Jian Wang, Meini Wang, Yong Wu and Hongbing Chen","doi":"10.1039/D4FO04019H","DOIUrl":null,"url":null,"abstract":"<p >Food allergies are pathological adverse reactions against harmless dietary proteins. While studies have shown the involvement of host metabolic changes (<em>e.g.</em>, lipid metabolism and amino acid metabolism) in the development of food allergy (FA), the adaptive changes in glucose metabolism induced by food allergen exposure remain largely unclear. In this study, BALB/c mice were sensitized intraperitoneally with an ovalbumin (OVA)/aluminum adjuvant, followed by oral OVA challenges to induce anaphylaxis. Increased levels of serum OVA-specific IgE and MCPT-1, and Th2 response bias were also presented in FA mice. Subsequently, the intestinal untargeted metabolomic analysis revealed the signature enrichment of glycolysis, manifested by increases in glycolytic metabolites including glucose-6-phosphate, fructose-6-phosphate, 2-phosphoglycerate, and lactate in FA mice. Consistently, the serum lactate level was found to be significantly elevated in allergic mice. Oral administration of OVA also upregulated the expression of critical metabolic enzymes in glycolysis, namely hexokinase 2, phosphoglycerate mutase 1, and lactate dehydrogenase. Moreover, the hypoxia inducible factor-1 (HIF-1) signaling pathway was activated in FA mice, and the expression of HIF-1α, known as the upstream regulator of glycolysis, was increased after oral OVA challenges. <em>In vitro</em> inhibition of HIF-1α was found to impede mast cell inflammatory responses to allergens. In summary, this study demonstrated that OVA-induced FA exhibited a glucose metabolic feature of HIF-1α-mediated glycolysis upregulation, suggesting the potential of HIF-1α/glycolysis targeted strategies in the alleviation of FA.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 2","pages":" 628-639"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral exposure to ovalbumin alters glucose metabolism in sensitized mice: upregulation of HIF-1α-mediated glycolysis†\",\"authors\":\"Fangfang Min, Zhongliang Wang, Huming Shao, Shuangyan Zheng, Youdou Cheng, Wenfeng Liu, Jian Wang, Meini Wang, Yong Wu and Hongbing Chen\",\"doi\":\"10.1039/D4FO04019H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Food allergies are pathological adverse reactions against harmless dietary proteins. While studies have shown the involvement of host metabolic changes (<em>e.g.</em>, lipid metabolism and amino acid metabolism) in the development of food allergy (FA), the adaptive changes in glucose metabolism induced by food allergen exposure remain largely unclear. In this study, BALB/c mice were sensitized intraperitoneally with an ovalbumin (OVA)/aluminum adjuvant, followed by oral OVA challenges to induce anaphylaxis. Increased levels of serum OVA-specific IgE and MCPT-1, and Th2 response bias were also presented in FA mice. Subsequently, the intestinal untargeted metabolomic analysis revealed the signature enrichment of glycolysis, manifested by increases in glycolytic metabolites including glucose-6-phosphate, fructose-6-phosphate, 2-phosphoglycerate, and lactate in FA mice. Consistently, the serum lactate level was found to be significantly elevated in allergic mice. Oral administration of OVA also upregulated the expression of critical metabolic enzymes in glycolysis, namely hexokinase 2, phosphoglycerate mutase 1, and lactate dehydrogenase. Moreover, the hypoxia inducible factor-1 (HIF-1) signaling pathway was activated in FA mice, and the expression of HIF-1α, known as the upstream regulator of glycolysis, was increased after oral OVA challenges. <em>In vitro</em> inhibition of HIF-1α was found to impede mast cell inflammatory responses to allergens. In summary, this study demonstrated that OVA-induced FA exhibited a glucose metabolic feature of HIF-1α-mediated glycolysis upregulation, suggesting the potential of HIF-1α/glycolysis targeted strategies in the alleviation of FA.</p>\",\"PeriodicalId\":77,\"journal\":{\"name\":\"Food & Function\",\"volume\":\" 2\",\"pages\":\" 628-639\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Function\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo04019h\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo04019h","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食物过敏是对无害的膳食蛋白质的病理性不良反应。虽然研究表明宿主代谢变化(如脂质代谢和氨基酸代谢)参与了食物过敏(FA)的发生,但食物过敏原暴露引起的糖代谢的适应性变化在很大程度上仍不清楚。在这项研究中,BALB/c小鼠腹腔注射卵清蛋白(OVA)/铝佐剂致敏,然后口服OVA刺激以诱导过敏反应。FA小鼠血清ova特异性IgE和MCPT-1水平升高,Th2反应偏倚也出现。随后,肠道非靶向代谢组学分析显示,FA小鼠的糖酵解显著富集,表现为糖酵解代谢物(包括葡萄糖-6-磷酸、果糖-6-磷酸、2-磷酸甘油酸和乳酸)增加。与此一致的是,在过敏小鼠中发现血清乳酸水平显著升高。口服OVA还上调糖酵解过程中关键代谢酶的表达,即己糖激酶2、磷酸甘油突变酶1和乳酸脱氢酶。此外,缺氧诱导因子-1 (HIF-1)信号通路在FA小鼠中被激活,并且被称为糖酵解上游调节因子的HIF-1α在口服OVA刺激后表达增加。体外抑制HIF-1α可抑制肥大细胞对过敏原的炎症反应。综上所述,本研究表明ova诱导的FA表现出HIF-1α-介导糖酵解上调的糖代谢特征,提示HIF-1α/糖酵解靶向策略在缓解FA中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oral exposure to ovalbumin alters glucose metabolism in sensitized mice: upregulation of HIF-1α-mediated glycolysis†

Food allergies are pathological adverse reactions against harmless dietary proteins. While studies have shown the involvement of host metabolic changes (e.g., lipid metabolism and amino acid metabolism) in the development of food allergy (FA), the adaptive changes in glucose metabolism induced by food allergen exposure remain largely unclear. In this study, BALB/c mice were sensitized intraperitoneally with an ovalbumin (OVA)/aluminum adjuvant, followed by oral OVA challenges to induce anaphylaxis. Increased levels of serum OVA-specific IgE and MCPT-1, and Th2 response bias were also presented in FA mice. Subsequently, the intestinal untargeted metabolomic analysis revealed the signature enrichment of glycolysis, manifested by increases in glycolytic metabolites including glucose-6-phosphate, fructose-6-phosphate, 2-phosphoglycerate, and lactate in FA mice. Consistently, the serum lactate level was found to be significantly elevated in allergic mice. Oral administration of OVA also upregulated the expression of critical metabolic enzymes in glycolysis, namely hexokinase 2, phosphoglycerate mutase 1, and lactate dehydrogenase. Moreover, the hypoxia inducible factor-1 (HIF-1) signaling pathway was activated in FA mice, and the expression of HIF-1α, known as the upstream regulator of glycolysis, was increased after oral OVA challenges. In vitro inhibition of HIF-1α was found to impede mast cell inflammatory responses to allergens. In summary, this study demonstrated that OVA-induced FA exhibited a glucose metabolic feature of HIF-1α-mediated glycolysis upregulation, suggesting the potential of HIF-1α/glycolysis targeted strategies in the alleviation of FA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. A plant-based diet index and all-cause and cause-specific mortality: a prospective study. Modification of Ganoderma lucidum spore shells into probiotic carriers: selective loading and colonic delivery of Lacticaseibacillus rhamnosus and effective therapy of inflammatory bowel disease. Monascus pilosus SWM-008 red mold rice and its components, monascinol and monascin, reduce obesity in a high-fat diet-induced rat model through synergistic modulation of gut microbiota and anti-lipogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1