EnDM-CPP:基于深度学习和机器学习的细胞穿透肽识别和序列信息分析的多视图可解释框架。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-12-23 DOI:10.1007/s12539-024-00673-4
Lun Zhu, Zehua Chen, Sen Yang
{"title":"EnDM-CPP:基于深度学习和机器学习的细胞穿透肽识别和序列信息分析的多视图可解释框架。","authors":"Lun Zhu, Zehua Chen, Sen Yang","doi":"10.1007/s12539-024-00673-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN). For dataset construction, three previous CPP benchmark datasets, including CPPsite 2.0, MLCPP 2.0, and CPP924, are merged to improve the diversity and reduce homology. For feature generation, two language model-based features obtained from the Transformer architecture, including ProtT5 and ESM-2, are employed in CNN and TextCNN. Additionally, sequence features, such as CPRS, Hybrid PseAAC, KSC, etc., are input to SVM and CatBoost. Based on the result of each predictor, Logistic Regression (LR) is built to predict the final decision. The experiment results indicate that ProtT5 and ESM-2 fusion features significantly contribute to predicting CPP and that combining employed features and models demonstrates better association. On an independent test dataset comparison, EnDM-CPP achieved an accuracy of 0.9495 and a Matthews correlation coefficient of 0.9008 with an improvement of 2.23%-9.48% and 4.32%-19.02%, respectively, compared with other state-of-the-art methods. Code and data are available at https://github.com/tudou1231/EnDM-CPP.git .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.\",\"authors\":\"Lun Zhu, Zehua Chen, Sen Yang\",\"doi\":\"10.1007/s12539-024-00673-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN). For dataset construction, three previous CPP benchmark datasets, including CPPsite 2.0, MLCPP 2.0, and CPP924, are merged to improve the diversity and reduce homology. For feature generation, two language model-based features obtained from the Transformer architecture, including ProtT5 and ESM-2, are employed in CNN and TextCNN. Additionally, sequence features, such as CPRS, Hybrid PseAAC, KSC, etc., are input to SVM and CatBoost. Based on the result of each predictor, Logistic Regression (LR) is built to predict the final decision. The experiment results indicate that ProtT5 and ESM-2 fusion features significantly contribute to predicting CPP and that combining employed features and models demonstrates better association. On an independent test dataset comparison, EnDM-CPP achieved an accuracy of 0.9495 and a Matthews correlation coefficient of 0.9008 with an improvement of 2.23%-9.48% and 4.32%-19.02%, respectively, compared with other state-of-the-art methods. Code and data are available at https://github.com/tudou1231/EnDM-CPP.git .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00673-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00673-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞穿透肽(CPPs)是药物传递的重要载体。由于在实验室中合成新的CPPs的过程既费时又耗费资源,因此可以使用预测潜在CPPs的计算方法来发现CPPs,以促进CPPs在治疗中的发展。本研究提出了EnDM-CPP,将机器学习算法(SVM和CatBoost)与卷积神经网络(CNN和TextCNN)相结合。在数据集构建方面,将CPPsite 2.0、MLCPP 2.0和CPP924三个CPP基准数据集合并,提高了多样性,降低了同源性。对于特征生成,CNN和TextCNN采用了从Transformer体系结构中获得的两个基于语言模型的特征,包括ProtT5和ESM-2。此外,将CPRS、Hybrid PseAAC、KSC等序列特征输入到SVM和CatBoost中。根据每个预测器的结果,建立逻辑回归(LR)来预测最终的决策。实验结果表明,ProtT5和ESM-2融合特征对CPP的预测有显著的贡献,并且将所采用的特征与模型相结合具有更好的关联性。在独立测试数据集对比中,EnDM-CPP的准确率为0.9495,马修斯相关系数为0.9008,与其他先进方法相比,分别提高了2.23% ~ 9.48%和4.32% ~ 19.02%。代码和数据可在https://github.com/tudou1231/EnDM-CPP.git上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.

Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN). For dataset construction, three previous CPP benchmark datasets, including CPPsite 2.0, MLCPP 2.0, and CPP924, are merged to improve the diversity and reduce homology. For feature generation, two language model-based features obtained from the Transformer architecture, including ProtT5 and ESM-2, are employed in CNN and TextCNN. Additionally, sequence features, such as CPRS, Hybrid PseAAC, KSC, etc., are input to SVM and CatBoost. Based on the result of each predictor, Logistic Regression (LR) is built to predict the final decision. The experiment results indicate that ProtT5 and ESM-2 fusion features significantly contribute to predicting CPP and that combining employed features and models demonstrates better association. On an independent test dataset comparison, EnDM-CPP achieved an accuracy of 0.9495 and a Matthews correlation coefficient of 0.9008 with an improvement of 2.23%-9.48% and 4.32%-19.02%, respectively, compared with other state-of-the-art methods. Code and data are available at https://github.com/tudou1231/EnDM-CPP.git .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition. A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction. NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields. Reconstructing Waddington Landscape from Cell Migration and Proliferation. MTGGF: A Metabolism Type-Aware Graph Generative Model for Molecular Metabolite Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1