{"title":"EnDM-CPP:基于深度学习和机器学习的细胞穿透肽识别和序列信息分析的多视图可解释框架。","authors":"Lun Zhu, Zehua Chen, Sen Yang","doi":"10.1007/s12539-024-00673-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN). For dataset construction, three previous CPP benchmark datasets, including CPPsite 2.0, MLCPP 2.0, and CPP924, are merged to improve the diversity and reduce homology. For feature generation, two language model-based features obtained from the Transformer architecture, including ProtT5 and ESM-2, are employed in CNN and TextCNN. Additionally, sequence features, such as CPRS, Hybrid PseAAC, KSC, etc., are input to SVM and CatBoost. Based on the result of each predictor, Logistic Regression (LR) is built to predict the final decision. The experiment results indicate that ProtT5 and ESM-2 fusion features significantly contribute to predicting CPP and that combining employed features and models demonstrates better association. On an independent test dataset comparison, EnDM-CPP achieved an accuracy of 0.9495 and a Matthews correlation coefficient of 0.9008 with an improvement of 2.23%-9.48% and 4.32%-19.02%, respectively, compared with other state-of-the-art methods. Code and data are available at https://github.com/tudou1231/EnDM-CPP.git .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.\",\"authors\":\"Lun Zhu, Zehua Chen, Sen Yang\",\"doi\":\"10.1007/s12539-024-00673-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN). For dataset construction, three previous CPP benchmark datasets, including CPPsite 2.0, MLCPP 2.0, and CPP924, are merged to improve the diversity and reduce homology. For feature generation, two language model-based features obtained from the Transformer architecture, including ProtT5 and ESM-2, are employed in CNN and TextCNN. Additionally, sequence features, such as CPRS, Hybrid PseAAC, KSC, etc., are input to SVM and CatBoost. Based on the result of each predictor, Logistic Regression (LR) is built to predict the final decision. The experiment results indicate that ProtT5 and ESM-2 fusion features significantly contribute to predicting CPP and that combining employed features and models demonstrates better association. On an independent test dataset comparison, EnDM-CPP achieved an accuracy of 0.9495 and a Matthews correlation coefficient of 0.9008 with an improvement of 2.23%-9.48% and 4.32%-19.02%, respectively, compared with other state-of-the-art methods. Code and data are available at https://github.com/tudou1231/EnDM-CPP.git .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00673-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00673-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.
Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN). For dataset construction, three previous CPP benchmark datasets, including CPPsite 2.0, MLCPP 2.0, and CPP924, are merged to improve the diversity and reduce homology. For feature generation, two language model-based features obtained from the Transformer architecture, including ProtT5 and ESM-2, are employed in CNN and TextCNN. Additionally, sequence features, such as CPRS, Hybrid PseAAC, KSC, etc., are input to SVM and CatBoost. Based on the result of each predictor, Logistic Regression (LR) is built to predict the final decision. The experiment results indicate that ProtT5 and ESM-2 fusion features significantly contribute to predicting CPP and that combining employed features and models demonstrates better association. On an independent test dataset comparison, EnDM-CPP achieved an accuracy of 0.9495 and a Matthews correlation coefficient of 0.9008 with an improvement of 2.23%-9.48% and 4.32%-19.02%, respectively, compared with other state-of-the-art methods. Code and data are available at https://github.com/tudou1231/EnDM-CPP.git .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.