{"title":"利用水泡性口炎病毒作为定向蛋白酶进化的平台。","authors":"Francesco Costacurta, Stefanie Rauch, Dorothee von Laer, Emmanuel Heilmann","doi":"10.1002/cpz1.70074","DOIUrl":null,"url":null,"abstract":"<p><p>Antiviral drugs are essential medications to save the lives of infected people. However, they are under constant threat to become ineffective as viruses evolve quickly. Studying the development of resistance is therefore paramount to understand the impact of mutations on pharmacological treatment and to make informed decisions. Yet, such studies are open to scrutiny, as they are considered gain-of-function research, which is especially problematic with viruses of pandemic potential. In this article, we present a protocol that allows for the selection of antiviral resistance mutations safely, without using the actual virus (e.g., SARS-CoV-2, MERS-CoV). Instead, we use vesicular stomatitis virus (VSV) that serves as a surrogate virus; like other RNA viruses, it is prone to mutations due to its polymerase lacking proofreading. By replacing parts of the VSV genome with transgenes from other viruses, VSV becomes dependent on their function. Thus, we can mount a selection pressure with antivirals targeting the transgenes to subsequently sequence selected resistance mutations. This article provides a protocol for this process as well as a sequencing pipeline that we used to collect mutations. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Using VSV as a platform for directed protease evolution Alternate Protocol: Dose response assay with TCID<sub>50</sub> readout Support Protocol 1: A pipeline for high-throughput VSV sequencing Support Protocol 2: Rescue of VSV.</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 12","pages":"e70074"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Vesicular Stomatitis Virus as a Platform for Directed Protease Evolution.\",\"authors\":\"Francesco Costacurta, Stefanie Rauch, Dorothee von Laer, Emmanuel Heilmann\",\"doi\":\"10.1002/cpz1.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antiviral drugs are essential medications to save the lives of infected people. However, they are under constant threat to become ineffective as viruses evolve quickly. Studying the development of resistance is therefore paramount to understand the impact of mutations on pharmacological treatment and to make informed decisions. Yet, such studies are open to scrutiny, as they are considered gain-of-function research, which is especially problematic with viruses of pandemic potential. In this article, we present a protocol that allows for the selection of antiviral resistance mutations safely, without using the actual virus (e.g., SARS-CoV-2, MERS-CoV). Instead, we use vesicular stomatitis virus (VSV) that serves as a surrogate virus; like other RNA viruses, it is prone to mutations due to its polymerase lacking proofreading. By replacing parts of the VSV genome with transgenes from other viruses, VSV becomes dependent on their function. Thus, we can mount a selection pressure with antivirals targeting the transgenes to subsequently sequence selected resistance mutations. This article provides a protocol for this process as well as a sequencing pipeline that we used to collect mutations. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Using VSV as a platform for directed protease evolution Alternate Protocol: Dose response assay with TCID<sub>50</sub> readout Support Protocol 1: A pipeline for high-throughput VSV sequencing Support Protocol 2: Rescue of VSV.</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":\"4 12\",\"pages\":\"e70074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpz1.70074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpz1.70074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0