海气耦合预测北大西洋三极海表面温度的季节相变

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-12-24 DOI:10.1038/s41612-024-00882-0
Haipeng Yu, Shanling Cheng, Jianping Huang, Zeyong Hu, Haojie Wu, Xin Wang
{"title":"海气耦合预测北大西洋三极海表面温度的季节相变","authors":"Haipeng Yu, Shanling Cheng, Jianping Huang, Zeyong Hu, Haojie Wu, Xin Wang","doi":"10.1038/s41612-024-00882-0","DOIUrl":null,"url":null,"abstract":"The North Atlantic Tripole sea surface temperature anomaly (NAT SSTA) is critical for predicting climate in Eurasia. Predictions for summer climate anomalies currently assume the NAT SSTA phase persists from boreal winter through summer. When NAT phase switches, predictions become unreliable. However, the NAT phase sustained/reversal mechanism from boreal winter to spring remains unclear. This study demonstrates that the evolution of the NAT phase could be driven by the North Atlantic Oscillation (NAO). When NAO phase persists (switches) during preceding boreal winter, the NAO-driven wind anomalies favor maintenance (transition) of NAT phase by causing sea surface heat flux anomalies. Meanwhile, NAT SSTA causes eddy-mean flow interaction by increasing atmospheric baroclinity, thereby generating positive feedback on the former NAO phase. The NAO phase change is leading 1–3 months for the NAT phase. These findings deepen our understanding of the interaction between NAO and NAT and provide implications for seasonal prediction in Eurasia.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-13"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00882-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Seasonal phase change of the North Atlantic Tripole Sea surface temperature predicted by air-sea coupling\",\"authors\":\"Haipeng Yu, Shanling Cheng, Jianping Huang, Zeyong Hu, Haojie Wu, Xin Wang\",\"doi\":\"10.1038/s41612-024-00882-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The North Atlantic Tripole sea surface temperature anomaly (NAT SSTA) is critical for predicting climate in Eurasia. Predictions for summer climate anomalies currently assume the NAT SSTA phase persists from boreal winter through summer. When NAT phase switches, predictions become unreliable. However, the NAT phase sustained/reversal mechanism from boreal winter to spring remains unclear. This study demonstrates that the evolution of the NAT phase could be driven by the North Atlantic Oscillation (NAO). When NAO phase persists (switches) during preceding boreal winter, the NAO-driven wind anomalies favor maintenance (transition) of NAT phase by causing sea surface heat flux anomalies. Meanwhile, NAT SSTA causes eddy-mean flow interaction by increasing atmospheric baroclinity, thereby generating positive feedback on the former NAO phase. The NAO phase change is leading 1–3 months for the NAT phase. These findings deepen our understanding of the interaction between NAO and NAT and provide implications for seasonal prediction in Eurasia.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00882-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00882-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00882-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

北大西洋三极海温异常(NAT SSTA)对预测欧亚大陆气候具有重要意义。目前对夏季气候异常的预测假设南纬海温期从北方冬季持续到夏季。当NAT阶段切换时,预测变得不可靠。然而,从北方冬季到春季的NAT阶段持续/反转机制尚不清楚。研究结果表明,北大西洋涛动(NAO)可能驱动了新低潮期的演变。当北纬冬季前期NAO相持续(转换)时,NAO驱动的风异常通过引起海面热通量异常有利于NAO相的维持(转换)。同时,NAT SSTA通过增加大气斜压性引起涡-平均流相互作用,从而对前NAO相产生正反馈。NAO阶段的变化导致了NAT阶段的1-3个月。这些发现加深了我们对NAO和NAT之间相互作用的理解,并为欧亚大陆的季节预测提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seasonal phase change of the North Atlantic Tripole Sea surface temperature predicted by air-sea coupling
The North Atlantic Tripole sea surface temperature anomaly (NAT SSTA) is critical for predicting climate in Eurasia. Predictions for summer climate anomalies currently assume the NAT SSTA phase persists from boreal winter through summer. When NAT phase switches, predictions become unreliable. However, the NAT phase sustained/reversal mechanism from boreal winter to spring remains unclear. This study demonstrates that the evolution of the NAT phase could be driven by the North Atlantic Oscillation (NAO). When NAO phase persists (switches) during preceding boreal winter, the NAO-driven wind anomalies favor maintenance (transition) of NAT phase by causing sea surface heat flux anomalies. Meanwhile, NAT SSTA causes eddy-mean flow interaction by increasing atmospheric baroclinity, thereby generating positive feedback on the former NAO phase. The NAO phase change is leading 1–3 months for the NAT phase. These findings deepen our understanding of the interaction between NAO and NAT and provide implications for seasonal prediction in Eurasia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Unusual and persistent easterlies restrained the 2023/24 El Niño development after a triple-dip La Niña Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning High prediction skill of decadal tropical cyclone variability in the North Atlantic and East Pacific in the met office decadal prediction system DePreSys4 Multifaceted changes in water availability with a warmer climate Vertical and spatial differences in ozone formation sensitivities under different ozone pollution levels in eastern Chinese cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1