Christian Breyer;Gabriel Lopez;Arman Aghahosseini;Dmitrii Bogdanov;Rasul Satymov;Ayobami Solomon Oyewo
{"title":"关于太阳能光伏在美洲能源产业转型中的作用","authors":"Christian Breyer;Gabriel Lopez;Arman Aghahosseini;Dmitrii Bogdanov;Rasul Satymov;Ayobami Solomon Oyewo","doi":"10.1109/JPHOTOV.2024.3476961","DOIUrl":null,"url":null,"abstract":"With the growth of solar photovoltaics (PV) in recent years as the largest power source by capacity added, the energy-industry transition towards high sustainability is accelerating. However, the energy-industry systems of the Americas are largely lagging as fossil fuels still dominate the electricity generation mix and the system as a whole. Energy-industry transition pathways are developed for all countries of the Americas reaching 100% renewable energy (RE) by 2050 for all energy and industry sectors. To benchmark the transition to 100% RE, the results are compared to current energy policies across the Americas, representing business-as-usual (BAU) conditions. The results indicate the significant potential to expand RE, especially solar PV, to reach the 100% RE target and fully defossilize each region's economy. The levelized cost of electricity (LCOE) can be reduced from its current level of 71 €/MWh to 24 €/MWh in 2050, and the levelized cost of final energy (LCOFE) sees reductions from 49 to 40 €/MWh from 2020 to 2050. Conversely, under BAU conditions, the LCOE only sees moderate reductions to 43 €/MWh in 2050, and the LCOFE remains relatively stable at 39 €/MWh in 2050. Widespread electrification across energy-industry sectors requires significant expansion of solar PV, which accounts for 78% of all electricity supply, leading to 14.8 TW of installed capacity. Furthermore, e-hydrogen for e-fuels and e-chemicals leads to an electrolyser capacity of 4.3 TW\n<sub>el</sub>\n. The dominating role of solar PV thus indicates that the future Americas energy-industry system can be characterized as a Solar-to-X Economy.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 1","pages":"17-23"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726607","citationCount":"0","resultStr":"{\"title\":\"On the Role of Solar PV for the Energy-Industry Transition in the Americas\",\"authors\":\"Christian Breyer;Gabriel Lopez;Arman Aghahosseini;Dmitrii Bogdanov;Rasul Satymov;Ayobami Solomon Oyewo\",\"doi\":\"10.1109/JPHOTOV.2024.3476961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growth of solar photovoltaics (PV) in recent years as the largest power source by capacity added, the energy-industry transition towards high sustainability is accelerating. However, the energy-industry systems of the Americas are largely lagging as fossil fuels still dominate the electricity generation mix and the system as a whole. Energy-industry transition pathways are developed for all countries of the Americas reaching 100% renewable energy (RE) by 2050 for all energy and industry sectors. To benchmark the transition to 100% RE, the results are compared to current energy policies across the Americas, representing business-as-usual (BAU) conditions. The results indicate the significant potential to expand RE, especially solar PV, to reach the 100% RE target and fully defossilize each region's economy. The levelized cost of electricity (LCOE) can be reduced from its current level of 71 €/MWh to 24 €/MWh in 2050, and the levelized cost of final energy (LCOFE) sees reductions from 49 to 40 €/MWh from 2020 to 2050. Conversely, under BAU conditions, the LCOE only sees moderate reductions to 43 €/MWh in 2050, and the LCOFE remains relatively stable at 39 €/MWh in 2050. Widespread electrification across energy-industry sectors requires significant expansion of solar PV, which accounts for 78% of all electricity supply, leading to 14.8 TW of installed capacity. Furthermore, e-hydrogen for e-fuels and e-chemicals leads to an electrolyser capacity of 4.3 TW\\n<sub>el</sub>\\n. The dominating role of solar PV thus indicates that the future Americas energy-industry system can be characterized as a Solar-to-X Economy.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 1\",\"pages\":\"17-23\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726607\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10726607/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10726607/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
On the Role of Solar PV for the Energy-Industry Transition in the Americas
With the growth of solar photovoltaics (PV) in recent years as the largest power source by capacity added, the energy-industry transition towards high sustainability is accelerating. However, the energy-industry systems of the Americas are largely lagging as fossil fuels still dominate the electricity generation mix and the system as a whole. Energy-industry transition pathways are developed for all countries of the Americas reaching 100% renewable energy (RE) by 2050 for all energy and industry sectors. To benchmark the transition to 100% RE, the results are compared to current energy policies across the Americas, representing business-as-usual (BAU) conditions. The results indicate the significant potential to expand RE, especially solar PV, to reach the 100% RE target and fully defossilize each region's economy. The levelized cost of electricity (LCOE) can be reduced from its current level of 71 €/MWh to 24 €/MWh in 2050, and the levelized cost of final energy (LCOFE) sees reductions from 49 to 40 €/MWh from 2020 to 2050. Conversely, under BAU conditions, the LCOE only sees moderate reductions to 43 €/MWh in 2050, and the LCOFE remains relatively stable at 39 €/MWh in 2050. Widespread electrification across energy-industry sectors requires significant expansion of solar PV, which accounts for 78% of all electricity supply, leading to 14.8 TW of installed capacity. Furthermore, e-hydrogen for e-fuels and e-chemicals leads to an electrolyser capacity of 4.3 TW
el
. The dominating role of solar PV thus indicates that the future Americas energy-industry system can be characterized as a Solar-to-X Economy.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.