温带气候分解-变换模式对的亚小时误差分析

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS IEEE Journal of Photovoltaics Pub Date : 2024-11-08 DOI:10.1109/JPHOTOV.2024.3483262
Yazan J. K. Musleh;Willow Herring;Carlos D. Rodríguez-Gallegos;Stuart A. Boden;Tasmiat Rahman
{"title":"温带气候分解-变换模式对的亚小时误差分析","authors":"Yazan J. K. Musleh;Willow Herring;Carlos D. Rodríguez-Gallegos;Stuart A. Boden;Tasmiat Rahman","doi":"10.1109/JPHOTOV.2024.3483262","DOIUrl":null,"url":null,"abstract":"Feasibility software for photovoltaic (PV) systems leverage decomposition-transposition model pairs to approximate Plane-of-Array (POA) irradiance. This study analyses the accuracy of 15 optical model pairs, using minute input irradiance, to assess POA predictions in a temperate setting by comparing to measured POA for both a tracker and a 55° south-facing tilted system. Using the Mean Absolute error (MAE) of ≤5% as the benchmark, variations were revealed across diverse sky conditions. Model estimates showcased a range of errors, from 2.67% to 51.07%, influenced by condition and system type. For the tracking system, the evaluation showed that in clear conditions, 10 pairs maintained errors within the range. However, this success diminished under intermediate skies, with 5 models remaining within range, and further reduced to 2 models in overcast conditions. The fixed-tilt system demonstrated similar trends but with fewer models meeting the required thresholds; 4 in clear and 2 in intermediate conditions. Only the DISC-SO model pair met the threshold in overcast conditions, exhibiting an MAE of 2.67%. Thus, DISC-SO made it a preferred choice for transposing horizontal irradiance. However, R2 values highlighted challenges due to the high temporal resolution of input data and the hourly data-based SO transposition model. Moreover, the study also examined the impact of decomposition and transposition models on percentage errors. Decomposition changes caused up to 2.43% for tracking systems and 5.34% for fixed-tilt systems. Transposition errors were higher, at 8.53% and 11.51%. Using hourly data reduced errors to 2.35%, 1.44%, and −2.15% in clear, intermediate, and overcast conditions.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 1","pages":"164-172"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subhourly Error Analysis of Decomposition–Transposition Model Pairs for Temperate Climates\",\"authors\":\"Yazan J. K. Musleh;Willow Herring;Carlos D. Rodríguez-Gallegos;Stuart A. Boden;Tasmiat Rahman\",\"doi\":\"10.1109/JPHOTOV.2024.3483262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feasibility software for photovoltaic (PV) systems leverage decomposition-transposition model pairs to approximate Plane-of-Array (POA) irradiance. This study analyses the accuracy of 15 optical model pairs, using minute input irradiance, to assess POA predictions in a temperate setting by comparing to measured POA for both a tracker and a 55° south-facing tilted system. Using the Mean Absolute error (MAE) of ≤5% as the benchmark, variations were revealed across diverse sky conditions. Model estimates showcased a range of errors, from 2.67% to 51.07%, influenced by condition and system type. For the tracking system, the evaluation showed that in clear conditions, 10 pairs maintained errors within the range. However, this success diminished under intermediate skies, with 5 models remaining within range, and further reduced to 2 models in overcast conditions. The fixed-tilt system demonstrated similar trends but with fewer models meeting the required thresholds; 4 in clear and 2 in intermediate conditions. Only the DISC-SO model pair met the threshold in overcast conditions, exhibiting an MAE of 2.67%. Thus, DISC-SO made it a preferred choice for transposing horizontal irradiance. However, R2 values highlighted challenges due to the high temporal resolution of input data and the hourly data-based SO transposition model. Moreover, the study also examined the impact of decomposition and transposition models on percentage errors. Decomposition changes caused up to 2.43% for tracking systems and 5.34% for fixed-tilt systems. Transposition errors were higher, at 8.53% and 11.51%. Using hourly data reduced errors to 2.35%, 1.44%, and −2.15% in clear, intermediate, and overcast conditions.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 1\",\"pages\":\"164-172\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747401/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10747401/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)系统的可行性软件利用分解-换位模型对来近似阵列平面(POA)辐照度。本研究分析了15个光学模型对的准确性,使用微小的输入辐照度,通过比较跟踪器和55°南向倾斜系统的测量POA,来评估温带环境下的POA预测。以平均绝对误差(MAE)≤5%为基准,揭示了不同天空条件下的变化。模型估计的误差范围从2.67%到51.07%,受条件和系统类型的影响。对于跟踪系统,评估表明,在明确的条件下,有10对保持误差在范围内。然而,在中等天空下,这一成功减少了,有5个模式在范围内,在阴天条件下进一步减少到2个模式。固定倾斜系统显示出类似的趋势,但满足要求阈值的模型较少;4个清晰状态,2个中等状态。在阴天条件下,只有DISC-SO模型对满足阈值,MAE为2.67%。因此,DISC-SO使其成为转置水平辐照度的首选。然而,由于输入数据的高时间分辨率和基于每小时数据的SO转置模型,R2值突出了挑战。此外,研究还考察了分解和换位模型对百分比误差的影响。分解变化对跟踪系统的影响为2.43%,对固定倾斜系统的影响为5.34%。移位错误率较高,分别为8.53%和11.51%。使用每小时的数据,在晴天、中天和阴天的情况下,误差分别降低到2.35%、1.44%和- 2.15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subhourly Error Analysis of Decomposition–Transposition Model Pairs for Temperate Climates
Feasibility software for photovoltaic (PV) systems leverage decomposition-transposition model pairs to approximate Plane-of-Array (POA) irradiance. This study analyses the accuracy of 15 optical model pairs, using minute input irradiance, to assess POA predictions in a temperate setting by comparing to measured POA for both a tracker and a 55° south-facing tilted system. Using the Mean Absolute error (MAE) of ≤5% as the benchmark, variations were revealed across diverse sky conditions. Model estimates showcased a range of errors, from 2.67% to 51.07%, influenced by condition and system type. For the tracking system, the evaluation showed that in clear conditions, 10 pairs maintained errors within the range. However, this success diminished under intermediate skies, with 5 models remaining within range, and further reduced to 2 models in overcast conditions. The fixed-tilt system demonstrated similar trends but with fewer models meeting the required thresholds; 4 in clear and 2 in intermediate conditions. Only the DISC-SO model pair met the threshold in overcast conditions, exhibiting an MAE of 2.67%. Thus, DISC-SO made it a preferred choice for transposing horizontal irradiance. However, R2 values highlighted challenges due to the high temporal resolution of input data and the hourly data-based SO transposition model. Moreover, the study also examined the impact of decomposition and transposition models on percentage errors. Decomposition changes caused up to 2.43% for tracking systems and 5.34% for fixed-tilt systems. Transposition errors were higher, at 8.53% and 11.51%. Using hourly data reduced errors to 2.35%, 1.44%, and −2.15% in clear, intermediate, and overcast conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Front Cover IEEE Journal of Photovoltaics Publication Information Golden List of Reviewers Electrical Modeling of Bifacial PV Modules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1