Claudia Buerhop;Eugene Ernest van Dyk;Frederik J. Vorster;Oleksandr Stroyuk;Oleksandr Mashkov;Jacqueline L. Crozier McCleland;Monphias Vumbugwa;Jens Hauch;Ian Marius Peters
{"title":"利用紫外荧光成像提高光伏组件现场检测的成本和时效性","authors":"Claudia Buerhop;Eugene Ernest van Dyk;Frederik J. Vorster;Oleksandr Stroyuk;Oleksandr Mashkov;Jacqueline L. Crozier McCleland;Monphias Vumbugwa;Jens Hauch;Ian Marius Peters","doi":"10.1109/JPHOTOV.2024.3492286","DOIUrl":null,"url":null,"abstract":"This case study highlights the potential of UV fluorescence imaging as an emerging photovoltaic (PV) module inspection tool allowing the cost and time of the field inspection to be considerably reduced and opening a gateway to high-throughput operation. The application of UV fluorescence imaging is advanced beyond its reported capabilities by combining this technique with near-infrared absorption spectroscopy and electrical measurements. This combined approach allows for the identification and assessment of polymer backsheets and encapsulants, i.e., detection of polymer-related features (e.g., degradation, corrosion) as well as other anomalies (e.g., cell cracks and hot cells) with otherwise inaccessible cost- and time-effectiveness. In particular, 1890 PV modules in a 2 MWp PV power station show critical issues, including inner backsheet cracks and an insulation resistance below 1 MΩ identified for 40% of inspected strings and assigned to specific backsheet type populations. With an average throughput of 400–500 modules per hour, the present approach demonstrates a large potential for acceleration and cost-reduction of the PV plant inspection. It provides significant insights into system performance enabling proactive operation and maintenance of PV systems.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 1","pages":"30-39"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Cost- and Time-Effectiveness of Field PV Module Inspection by UV-Fluorescence Imaging\",\"authors\":\"Claudia Buerhop;Eugene Ernest van Dyk;Frederik J. Vorster;Oleksandr Stroyuk;Oleksandr Mashkov;Jacqueline L. Crozier McCleland;Monphias Vumbugwa;Jens Hauch;Ian Marius Peters\",\"doi\":\"10.1109/JPHOTOV.2024.3492286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This case study highlights the potential of UV fluorescence imaging as an emerging photovoltaic (PV) module inspection tool allowing the cost and time of the field inspection to be considerably reduced and opening a gateway to high-throughput operation. The application of UV fluorescence imaging is advanced beyond its reported capabilities by combining this technique with near-infrared absorption spectroscopy and electrical measurements. This combined approach allows for the identification and assessment of polymer backsheets and encapsulants, i.e., detection of polymer-related features (e.g., degradation, corrosion) as well as other anomalies (e.g., cell cracks and hot cells) with otherwise inaccessible cost- and time-effectiveness. In particular, 1890 PV modules in a 2 MWp PV power station show critical issues, including inner backsheet cracks and an insulation resistance below 1 MΩ identified for 40% of inspected strings and assigned to specific backsheet type populations. With an average throughput of 400–500 modules per hour, the present approach demonstrates a large potential for acceleration and cost-reduction of the PV plant inspection. It provides significant insights into system performance enabling proactive operation and maintenance of PV systems.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 1\",\"pages\":\"30-39\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755961/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10755961/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancing the Cost- and Time-Effectiveness of Field PV Module Inspection by UV-Fluorescence Imaging
This case study highlights the potential of UV fluorescence imaging as an emerging photovoltaic (PV) module inspection tool allowing the cost and time of the field inspection to be considerably reduced and opening a gateway to high-throughput operation. The application of UV fluorescence imaging is advanced beyond its reported capabilities by combining this technique with near-infrared absorption spectroscopy and electrical measurements. This combined approach allows for the identification and assessment of polymer backsheets and encapsulants, i.e., detection of polymer-related features (e.g., degradation, corrosion) as well as other anomalies (e.g., cell cracks and hot cells) with otherwise inaccessible cost- and time-effectiveness. In particular, 1890 PV modules in a 2 MWp PV power station show critical issues, including inner backsheet cracks and an insulation resistance below 1 MΩ identified for 40% of inspected strings and assigned to specific backsheet type populations. With an average throughput of 400–500 modules per hour, the present approach demonstrates a large potential for acceleration and cost-reduction of the PV plant inspection. It provides significant insights into system performance enabling proactive operation and maintenance of PV systems.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.