{"title":"Mori-zwanzig信念抽象方法及其在信念空间规划中的应用","authors":"Mengxue Hou, Tony X. Lin, Enlu Zhou, Fumin Zhang","doi":"10.1007/s10514-024-10185-1","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a learning-based method to extract symbolic representations of the belief state and its dynamics in order to solve planning problems in a continuous-state partially observable Markov decision processes (POMDP) problem. While existing approaches typically parameterize the continuous-state POMDP into a finite-dimensional Markovian model, they are unable to preserve fidelity of the abstracted model. To improve accuracy of the abstracted representation, we introduce a memory-dependent abstraction approach to mitigate the modeling error. The first major contribution of this paper is we propose a Neural Network based method to learn the non-Markovian transition model based on the Mori-Zwanzig (M-Z) formalism. Different from existing work in applying M-Z formalism to autonomous time-invariant systems, our approach is the first work generalizing the M-Z formalism to robotics, by addressing the non-Markovian modeling of the belief dynamics that is dependent on historical observations and actions. The second major contribution is we theoretically show that modeling the non-Markovian memory effect in the abstracted belief dynamics improves the modeling accuracy, which is the key benefit of the proposed algorithm. Simulation experiment of a belief space planning problem is provided to validate the performance of the proposed belief abstraction algorithms.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10185-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Mori-zwanzig approach for belief abstraction with application to belief space planning\",\"authors\":\"Mengxue Hou, Tony X. Lin, Enlu Zhou, Fumin Zhang\",\"doi\":\"10.1007/s10514-024-10185-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a learning-based method to extract symbolic representations of the belief state and its dynamics in order to solve planning problems in a continuous-state partially observable Markov decision processes (POMDP) problem. While existing approaches typically parameterize the continuous-state POMDP into a finite-dimensional Markovian model, they are unable to preserve fidelity of the abstracted model. To improve accuracy of the abstracted representation, we introduce a memory-dependent abstraction approach to mitigate the modeling error. The first major contribution of this paper is we propose a Neural Network based method to learn the non-Markovian transition model based on the Mori-Zwanzig (M-Z) formalism. Different from existing work in applying M-Z formalism to autonomous time-invariant systems, our approach is the first work generalizing the M-Z formalism to robotics, by addressing the non-Markovian modeling of the belief dynamics that is dependent on historical observations and actions. The second major contribution is we theoretically show that modeling the non-Markovian memory effect in the abstracted belief dynamics improves the modeling accuracy, which is the key benefit of the proposed algorithm. Simulation experiment of a belief space planning problem is provided to validate the performance of the proposed belief abstraction algorithms.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10185-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10185-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10185-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Mori-zwanzig approach for belief abstraction with application to belief space planning
We propose a learning-based method to extract symbolic representations of the belief state and its dynamics in order to solve planning problems in a continuous-state partially observable Markov decision processes (POMDP) problem. While existing approaches typically parameterize the continuous-state POMDP into a finite-dimensional Markovian model, they are unable to preserve fidelity of the abstracted model. To improve accuracy of the abstracted representation, we introduce a memory-dependent abstraction approach to mitigate the modeling error. The first major contribution of this paper is we propose a Neural Network based method to learn the non-Markovian transition model based on the Mori-Zwanzig (M-Z) formalism. Different from existing work in applying M-Z formalism to autonomous time-invariant systems, our approach is the first work generalizing the M-Z formalism to robotics, by addressing the non-Markovian modeling of the belief dynamics that is dependent on historical observations and actions. The second major contribution is we theoretically show that modeling the non-Markovian memory effect in the abstracted belief dynamics improves the modeling accuracy, which is the key benefit of the proposed algorithm. Simulation experiment of a belief space planning problem is provided to validate the performance of the proposed belief abstraction algorithms.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.