掺钇纳米粒子Li4Ti5O12作为高倍率高能锂离子电池的阳极

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-12-24 DOI:10.1186/s11671-024-04177-4
Kai Su, Chenxia Tang, Chunyue Li, Shijie Weng, Yong Xiang, Xiaoli Peng
{"title":"掺钇纳米粒子Li4Ti5O12作为高倍率高能锂离子电池的阳极","authors":"Kai Su,&nbsp;Chenxia Tang,&nbsp;Chunyue Li,&nbsp;Shijie Weng,&nbsp;Yong Xiang,&nbsp;Xiaoli Peng","doi":"10.1186/s11671-024-04177-4","DOIUrl":null,"url":null,"abstract":"<div><p>Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form Li<sub>4</sub>Y<sub>0.2</sub>Ti<sub>4.8</sub>O<sub>12</sub> nanoparticles. This approach optimized electron and ion transport, markedly enhancing rate and cycle performance. XRD and TEM revealed that Y addition increased interplanar distance of LTO and widened Li<sup>+</sup> transport pathways. XPS indicated that Y doping augmented the oxygen vacancy concentration and Ti<sup>3+</sup> content. UV tests demonstrated a band gap reduction from 3.72 eV to 2.94 eV, accompanied by enhanced electronic conductivity. EIS tests showed lithium-ion diffusion coefficient remarkably increased to 1.27 × 10<sup>–10</sup> cm<sup>2</sup> s<sup>−1</sup><sub>.</sub> The initial discharge capacity of Li<sub>4</sub>Y<sub>0.2</sub>Ti<sub>4.8</sub>O<sub>12</sub> at 1 A g<sup>−1</sup> reached 198.9 mAh g<sup>−1</sup> and retained 89.3% capacity after 1000 cycles. At 6 A g<sup>−1</sup>, the discharge capacity was 161.1 mAh g<sup>−1</sup>, while at an ultra-high current density of 20 A g<sup>−1</sup>, it reached 78.8 mAh g<sup>−1</sup>, highlighting its robust rate performance. The yttrium-doped and nano-morphology stabilizes the LTO lattice, enhancing rate performance and cycling stability. This study reveals that LTO has the potential to be used in the high-energy fast-charging storage market.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04177-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Yttrium-doped Li4Ti5O12 nanoparticles as anode for high-rate and high-energy lithium-ion batteries\",\"authors\":\"Kai Su,&nbsp;Chenxia Tang,&nbsp;Chunyue Li,&nbsp;Shijie Weng,&nbsp;Yong Xiang,&nbsp;Xiaoli Peng\",\"doi\":\"10.1186/s11671-024-04177-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form Li<sub>4</sub>Y<sub>0.2</sub>Ti<sub>4.8</sub>O<sub>12</sub> nanoparticles. This approach optimized electron and ion transport, markedly enhancing rate and cycle performance. XRD and TEM revealed that Y addition increased interplanar distance of LTO and widened Li<sup>+</sup> transport pathways. XPS indicated that Y doping augmented the oxygen vacancy concentration and Ti<sup>3+</sup> content. UV tests demonstrated a band gap reduction from 3.72 eV to 2.94 eV, accompanied by enhanced electronic conductivity. EIS tests showed lithium-ion diffusion coefficient remarkably increased to 1.27 × 10<sup>–10</sup> cm<sup>2</sup> s<sup>−1</sup><sub>.</sub> The initial discharge capacity of Li<sub>4</sub>Y<sub>0.2</sub>Ti<sub>4.8</sub>O<sub>12</sub> at 1 A g<sup>−1</sup> reached 198.9 mAh g<sup>−1</sup> and retained 89.3% capacity after 1000 cycles. At 6 A g<sup>−1</sup>, the discharge capacity was 161.1 mAh g<sup>−1</sup>, while at an ultra-high current density of 20 A g<sup>−1</sup>, it reached 78.8 mAh g<sup>−1</sup>, highlighting its robust rate performance. The yttrium-doped and nano-morphology stabilizes the LTO lattice, enhancing rate performance and cycling stability. This study reveals that LTO has the potential to be used in the high-energy fast-charging storage market.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-024-04177-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04177-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04177-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于零应变和稳定的晶格,Li4Ti5O12 (LTO)电池以安全性和长寿命而闻名。然而,它们的低比容量和锂离子扩散限制了它们的实际应用。本研究通过水热法掺杂钇改性LTO,制备li4y0.2 ti4.80 o12纳米粒子。这种方法优化了电子和离子的传递,显著提高了速率和循环性能。XRD和TEM分析表明,Y的加入增加了LTO的面间距,拓宽了Li+的输运途径。XPS表明,Y掺杂提高了氧空位浓度和Ti3+含量。紫外测试表明,带隙从3.72 eV减小到2.94 eV,同时电子导电性增强。EIS测试表明,锂离子扩散系数显著提高至1.27 × 10-10 cm2 s−1。li4y0.2 ti4.80 o12在1 A g−1条件下的初始放电容量达到198.9 mAh g−1,循环1000次后容量保持89.3%。在6 A g−1时,放电容量为161.1 mAh g−1,而在20 A g−1的超高电流密度下,放电容量达到78.8 mAh g−1,突出了其稳健的倍率性能。掺杂钇和纳米形貌稳定了LTO晶格,提高了速率性能和循环稳定性。该研究表明,LTO具有应用于高能快速充电存储市场的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yttrium-doped Li4Ti5O12 nanoparticles as anode for high-rate and high-energy lithium-ion batteries

Li4Ti5O12 (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form Li4Y0.2Ti4.8O12 nanoparticles. This approach optimized electron and ion transport, markedly enhancing rate and cycle performance. XRD and TEM revealed that Y addition increased interplanar distance of LTO and widened Li+ transport pathways. XPS indicated that Y doping augmented the oxygen vacancy concentration and Ti3+ content. UV tests demonstrated a band gap reduction from 3.72 eV to 2.94 eV, accompanied by enhanced electronic conductivity. EIS tests showed lithium-ion diffusion coefficient remarkably increased to 1.27 × 10–10 cm2 s−1. The initial discharge capacity of Li4Y0.2Ti4.8O12 at 1 A g−1 reached 198.9 mAh g−1 and retained 89.3% capacity after 1000 cycles. At 6 A g−1, the discharge capacity was 161.1 mAh g−1, while at an ultra-high current density of 20 A g−1, it reached 78.8 mAh g−1, highlighting its robust rate performance. The yttrium-doped and nano-morphology stabilizes the LTO lattice, enhancing rate performance and cycling stability. This study reveals that LTO has the potential to be used in the high-energy fast-charging storage market.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Effect of food-simulating liquids and polishing times on the color stability of microhybrid and nanohybrid resin composites Correction: Solid‑state hydrogen storage materials Systematic review of peptide nanoparticles for improved diabetes outcomes: insights and opportunities N-doped graphene oxide nanomaterial: synthesis and application as controlled-release of urea for advancement in modern agriculture Advances in macro-bioactive materials enhancing dentin bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1