对c -葡萄糖基转移酶IroB的重新评估阐明了其对非天然三儿茶酚酸肠杆菌模拟物c -葡萄糖基化的能力。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-12-24 DOI:10.1021/acs.biochem.4c00581
Rachel N Motz, Jaden K Anderson, Elizabeth M Nolan
{"title":"对c -葡萄糖基转移酶IroB的重新评估阐明了其对非天然三儿茶酚酸肠杆菌模拟物c -葡萄糖基化的能力。","authors":"Rachel N Motz, Jaden K Anderson, Elizabeth M Nolan","doi":"10.1021/acs.biochem.4c00581","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogen-associated <i>C</i>-glucosyltransferase IroB is involved in the biosynthesis of salmochelins, <i>C</i>-glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including <i>Salmonella enterica</i> and <i>Escherichia coli</i>. Here, we reassess the ability of IroB to <i>C</i>-glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB. Time course analyses and steady-state kinetic studies, which were performed under conditions that provide enhanced activity relative to prior studies, inform the substrate selectivity and catalytic efficiencies of this enzyme. We extend these findings to the preparation of a siderophore-antibiotic conjugate composed of monoglucosylated TC and ampicillin (MGT-Amp). Examination of its antibacterial activity and receptor specificity demonstrates that MGT-Amp targets pathogenicity because it shows specificty for the pathogen-associated outer membrane receptor IroN. Overall, our findings extend the biochemical characterization of IroB and its substrate scope and illustrate the ability to leverage a bacterial <i>C</i>-glucosyltransferase for non-native chemoenzymatic transformations along with potential applications of salmochelin mimics.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-evaluation of the <i>C</i>-Glucosyltransferase IroB Illuminates Its Ability to <i>C</i>-Glucosylate Non-native Triscatecholate Enterobactin Mimics.\",\"authors\":\"Rachel N Motz, Jaden K Anderson, Elizabeth M Nolan\",\"doi\":\"10.1021/acs.biochem.4c00581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pathogen-associated <i>C</i>-glucosyltransferase IroB is involved in the biosynthesis of salmochelins, <i>C</i>-glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including <i>Salmonella enterica</i> and <i>Escherichia coli</i>. Here, we reassess the ability of IroB to <i>C</i>-glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB. Time course analyses and steady-state kinetic studies, which were performed under conditions that provide enhanced activity relative to prior studies, inform the substrate selectivity and catalytic efficiencies of this enzyme. We extend these findings to the preparation of a siderophore-antibiotic conjugate composed of monoglucosylated TC and ampicillin (MGT-Amp). Examination of its antibacterial activity and receptor specificity demonstrates that MGT-Amp targets pathogenicity because it shows specificty for the pathogen-associated outer membrane receptor IroN. Overall, our findings extend the biochemical characterization of IroB and its substrate scope and illustrate the ability to leverage a bacterial <i>C</i>-glucosyltransferase for non-native chemoenzymatic transformations along with potential applications of salmochelin mimics.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00581\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00581","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

病原体相关的c -葡萄糖基转移酶IroB参与肠杆菌素的生物合成,肠杆菌素是肠沙门氏菌和大肠杆菌等肠道细菌的三儿茶酚类铁载体。肠杆菌素是肠杆菌素的c -葡萄糖基化衍生物。在这里,我们重新评估了IroB对非天然三儿茶酚酸Ent模拟物的c -葡糖苷化能力,这可能在基于铁载体的治疗和诊断的设计和开发中具有实用价值。我们建立了TRENCAM (TC)和MECAM (MC),分别用三(2-氨基乙基)胺或亚甲基衍生的骨架取代Ent的三内酯核心合成Ent类似物,以及它们的单糖基化同源物作为IroB的底物。时间过程分析和稳态动力学研究是在相对于先前的研究提供增强活性的条件下进行的,可以了解该酶的底物选择性和催化效率。我们将这些发现扩展到由单葡糖化TC和氨苄西林组成的铁载体-抗生素缀合物的制备(MGT-Amp)。对其抗菌活性和受体特异性的检测表明,MGT-Amp针对致病性,因为它对病原体相关的外膜受体铁具有特异性。总的来说,我们的研究结果扩展了IroB的生化特性及其底物范围,并说明了利用细菌c -葡萄糖基转移酶进行非天然化学酶转化的能力,以及salmochelin模拟物的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Re-evaluation of the C-Glucosyltransferase IroB Illuminates Its Ability to C-Glucosylate Non-native Triscatecholate Enterobactin Mimics.

The pathogen-associated C-glucosyltransferase IroB is involved in the biosynthesis of salmochelins, C-glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including Salmonella enterica and Escherichia coli. Here, we reassess the ability of IroB to C-glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB. Time course analyses and steady-state kinetic studies, which were performed under conditions that provide enhanced activity relative to prior studies, inform the substrate selectivity and catalytic efficiencies of this enzyme. We extend these findings to the preparation of a siderophore-antibiotic conjugate composed of monoglucosylated TC and ampicillin (MGT-Amp). Examination of its antibacterial activity and receptor specificity demonstrates that MGT-Amp targets pathogenicity because it shows specificty for the pathogen-associated outer membrane receptor IroN. Overall, our findings extend the biochemical characterization of IroB and its substrate scope and illustrate the ability to leverage a bacterial C-glucosyltransferase for non-native chemoenzymatic transformations along with potential applications of salmochelin mimics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Pathway Specific Unbinding Free Energy Profiles of Ritonavir Dissociation from HIV-1 Protease. Conversion of Inactive Non-Pro1 Tautomerase Superfamily Members into Active Tautomerases: Analysis of the Pro1 Mutants. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis. The Huntingtin Transport Complex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1