Marwa I. Serag, Samar S. Tawfik, Hassan M. Eisa, Sahar M. I. Badr
{"title":"新型1,3,4-噻二唑类EGFR抑制剂的设计、合成、生物学评价及分子对接研究","authors":"Marwa I. Serag, Samar S. Tawfik, Hassan M. Eisa, Sahar M. I. Badr","doi":"10.1002/ddr.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Five series of new 1,3,4-thiadiazole hybrids were designed and synthesized as promising EGFR inhibitors. Three human cancer cell lines were employed for testing each hybrid's in vitro antiproliferative efficacy; colon HCT-116, liver HepG-2 and breast MCF-7 using MTT assay. Comparing compound <b>9a</b> to the reference doxorubicin, <b>9a</b> shown superior activity to that of Dox with respect to MCF-7 (IC<sub>50</sub> 3.31 µM) while being secure for normal cells WI-38 (IC<sub>50</sub> = 43.99 µM). Further evaluation of the EGFR inhibitory activity of the most active candidates—<b>4a, 6b</b>, <b>8b, 9a</b>, and <b>9 d</b>—was performed. Of them, compounds <b>9a</b> and <b>8b</b> demonstrated the highest IC<sub>50</sub> values, 0.08 and 0.15 µM, respectively, relative to the reference gefitinib (IC<sub>50</sub> = 0.04 µM). Subsequent mechanistic analysis of compound <b>9a</b> revealed a notable 14.24-fold increase in overall apoptosis and a 28.92% cell cycle arrest at G2/M. Additionally, research on apoptosis demonstrated that it triggered the mitochondrial apoptotic pathway. In MCF-7 cells, it also led to an increase in ROS buildup. For the most powerful EGFR inhibitors, <b>9a</b> and <b>8b</b>, a molecular docking research was conducted, and all of the findings agreed with the biological findings.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, Biological Evaluation and Molecular Docking Study of New 1,3,4-Thiadiazole-Based Compounds as EGFR Inhibitors\",\"authors\":\"Marwa I. Serag, Samar S. Tawfik, Hassan M. Eisa, Sahar M. I. Badr\",\"doi\":\"10.1002/ddr.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Five series of new 1,3,4-thiadiazole hybrids were designed and synthesized as promising EGFR inhibitors. Three human cancer cell lines were employed for testing each hybrid's in vitro antiproliferative efficacy; colon HCT-116, liver HepG-2 and breast MCF-7 using MTT assay. Comparing compound <b>9a</b> to the reference doxorubicin, <b>9a</b> shown superior activity to that of Dox with respect to MCF-7 (IC<sub>50</sub> 3.31 µM) while being secure for normal cells WI-38 (IC<sub>50</sub> = 43.99 µM). Further evaluation of the EGFR inhibitory activity of the most active candidates—<b>4a, 6b</b>, <b>8b, 9a</b>, and <b>9 d</b>—was performed. Of them, compounds <b>9a</b> and <b>8b</b> demonstrated the highest IC<sub>50</sub> values, 0.08 and 0.15 µM, respectively, relative to the reference gefitinib (IC<sub>50</sub> = 0.04 µM). Subsequent mechanistic analysis of compound <b>9a</b> revealed a notable 14.24-fold increase in overall apoptosis and a 28.92% cell cycle arrest at G2/M. Additionally, research on apoptosis demonstrated that it triggered the mitochondrial apoptotic pathway. In MCF-7 cells, it also led to an increase in ROS buildup. For the most powerful EGFR inhibitors, <b>9a</b> and <b>8b</b>, a molecular docking research was conducted, and all of the findings agreed with the biological findings.</p>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70035\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, Synthesis, Biological Evaluation and Molecular Docking Study of New 1,3,4-Thiadiazole-Based Compounds as EGFR Inhibitors
Five series of new 1,3,4-thiadiazole hybrids were designed and synthesized as promising EGFR inhibitors. Three human cancer cell lines were employed for testing each hybrid's in vitro antiproliferative efficacy; colon HCT-116, liver HepG-2 and breast MCF-7 using MTT assay. Comparing compound 9a to the reference doxorubicin, 9a shown superior activity to that of Dox with respect to MCF-7 (IC50 3.31 µM) while being secure for normal cells WI-38 (IC50 = 43.99 µM). Further evaluation of the EGFR inhibitory activity of the most active candidates—4a, 6b, 8b, 9a, and 9 d—was performed. Of them, compounds 9a and 8b demonstrated the highest IC50 values, 0.08 and 0.15 µM, respectively, relative to the reference gefitinib (IC50 = 0.04 µM). Subsequent mechanistic analysis of compound 9a revealed a notable 14.24-fold increase in overall apoptosis and a 28.92% cell cycle arrest at G2/M. Additionally, research on apoptosis demonstrated that it triggered the mitochondrial apoptotic pathway. In MCF-7 cells, it also led to an increase in ROS buildup. For the most powerful EGFR inhibitors, 9a and 8b, a molecular docking research was conducted, and all of the findings agreed with the biological findings.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.