Aparna Lakkaraju, Patricia Boya, Marie Csete, Deborah A Ferrington, James B Hurley, Alfredo A Sadun, Peng Shang, Ruchi Sharma, Debasish Sinha, Marius Ueffing, Susan E Brockerhoff
{"title":"线粒体、溶酶体和其他细胞器之间的相互作用如何预防或促进干性老年性黄斑变性。","authors":"Aparna Lakkaraju, Patricia Boya, Marie Csete, Deborah A Ferrington, James B Hurley, Alfredo A Sadun, Peng Shang, Ruchi Sharma, Debasish Sinha, Marius Ueffing, Susan E Brockerhoff","doi":"10.1016/j.exer.2024.110219","DOIUrl":null,"url":null,"abstract":"<p><p>Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the \"Mitochondria, Lysosomes, and other Organelle Interactions\" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110219"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration.\",\"authors\":\"Aparna Lakkaraju, Patricia Boya, Marie Csete, Deborah A Ferrington, James B Hurley, Alfredo A Sadun, Peng Shang, Ruchi Sharma, Debasish Sinha, Marius Ueffing, Susan E Brockerhoff\",\"doi\":\"10.1016/j.exer.2024.110219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the \\\"Mitochondria, Lysosomes, and other Organelle Interactions\\\" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110219\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2024.110219\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110219","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration.
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.