{"title":"基于粪便细菌和益生菌的大豆苷元体外生物转化分析。","authors":"Yuqing Wang, Zhe Li, Dongxue Wu, Zicheng Wang, Shaoping Wang, Quan Jiang, Xun Gong, Congmin Xia","doi":"10.1016/j.jpba.2024.116623","DOIUrl":null,"url":null,"abstract":"<p><p>Daidzin, as one of isoflavone glycosides, has been reported to have multiple activities with few absorbed into body. However, the metabolic behavior of daidzin by intestinal flora has not been researched, that this defect severely constrains its applications. In this study, daidzin and its metabolites were qualitatively and quantitatively analyzed by HPLC and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) in the fermentation system for daidzin and fecal bacteria. Meanwhile, the alterations of intestinal flora with daidzin were detected by 16S rRNA sequencing technology. Based on the results of intestinal flora, the daidzin and its metabolites transformed by the screened probiotics were quantified and qualified, which the results would corroborate the transformation of daidzin and fecal bacteria. Eventually, daidzin was decreased from 0.30158 mg/mL at 0 h to 0.01176 mg/mL at 48 h, daidzein, as the aglycone of daidzin, was increased from 0.02963 mg/mL at 0 h to 0.04682 mg/mL at 48 h, suggesting the presence of other metabolites. Next, 31 metabolites including the products of ketone removal, Retro-Diels-Alder (RDA) fragmentation, hydroxylation, methylation, C ring cracking and sulfation were identified. The results of 16S rRNA sequencing showed that the intestinal flora, especially Bifidobacterium, was dramatically altered after incubation with daidzin (p < 0.05). Hereby, the fermentation systems of five probiotics (Lactobacillus 3044, Bifidobacterium adolescentis 1.2190, Bifidobacterium longum 25033, Lactobacillus plantarum F1 and Lactobacillus plantarum B2) and daidzin were approved, and these results showed that most metabolites of daidzin were able to be identified with the identical transformation reactions. The study revealed the rationality of daidzin biotransformation at the new perspective, and constructs a new model for fecal metabolites of compounds. These results will also broaden the continued research on daidzin.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116623"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotransformation analysis of daidzin in vitro based on fecal bacteria and probiotics.\",\"authors\":\"Yuqing Wang, Zhe Li, Dongxue Wu, Zicheng Wang, Shaoping Wang, Quan Jiang, Xun Gong, Congmin Xia\",\"doi\":\"10.1016/j.jpba.2024.116623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Daidzin, as one of isoflavone glycosides, has been reported to have multiple activities with few absorbed into body. However, the metabolic behavior of daidzin by intestinal flora has not been researched, that this defect severely constrains its applications. In this study, daidzin and its metabolites were qualitatively and quantitatively analyzed by HPLC and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) in the fermentation system for daidzin and fecal bacteria. Meanwhile, the alterations of intestinal flora with daidzin were detected by 16S rRNA sequencing technology. Based on the results of intestinal flora, the daidzin and its metabolites transformed by the screened probiotics were quantified and qualified, which the results would corroborate the transformation of daidzin and fecal bacteria. Eventually, daidzin was decreased from 0.30158 mg/mL at 0 h to 0.01176 mg/mL at 48 h, daidzein, as the aglycone of daidzin, was increased from 0.02963 mg/mL at 0 h to 0.04682 mg/mL at 48 h, suggesting the presence of other metabolites. Next, 31 metabolites including the products of ketone removal, Retro-Diels-Alder (RDA) fragmentation, hydroxylation, methylation, C ring cracking and sulfation were identified. The results of 16S rRNA sequencing showed that the intestinal flora, especially Bifidobacterium, was dramatically altered after incubation with daidzin (p < 0.05). Hereby, the fermentation systems of five probiotics (Lactobacillus 3044, Bifidobacterium adolescentis 1.2190, Bifidobacterium longum 25033, Lactobacillus plantarum F1 and Lactobacillus plantarum B2) and daidzin were approved, and these results showed that most metabolites of daidzin were able to be identified with the identical transformation reactions. The study revealed the rationality of daidzin biotransformation at the new perspective, and constructs a new model for fecal metabolites of compounds. These results will also broaden the continued research on daidzin.</p>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"255 \",\"pages\":\"116623\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpba.2024.116623\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116623","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Biotransformation analysis of daidzin in vitro based on fecal bacteria and probiotics.
Daidzin, as one of isoflavone glycosides, has been reported to have multiple activities with few absorbed into body. However, the metabolic behavior of daidzin by intestinal flora has not been researched, that this defect severely constrains its applications. In this study, daidzin and its metabolites were qualitatively and quantitatively analyzed by HPLC and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) in the fermentation system for daidzin and fecal bacteria. Meanwhile, the alterations of intestinal flora with daidzin were detected by 16S rRNA sequencing technology. Based on the results of intestinal flora, the daidzin and its metabolites transformed by the screened probiotics were quantified and qualified, which the results would corroborate the transformation of daidzin and fecal bacteria. Eventually, daidzin was decreased from 0.30158 mg/mL at 0 h to 0.01176 mg/mL at 48 h, daidzein, as the aglycone of daidzin, was increased from 0.02963 mg/mL at 0 h to 0.04682 mg/mL at 48 h, suggesting the presence of other metabolites. Next, 31 metabolites including the products of ketone removal, Retro-Diels-Alder (RDA) fragmentation, hydroxylation, methylation, C ring cracking and sulfation were identified. The results of 16S rRNA sequencing showed that the intestinal flora, especially Bifidobacterium, was dramatically altered after incubation with daidzin (p < 0.05). Hereby, the fermentation systems of five probiotics (Lactobacillus 3044, Bifidobacterium adolescentis 1.2190, Bifidobacterium longum 25033, Lactobacillus plantarum F1 and Lactobacillus plantarum B2) and daidzin were approved, and these results showed that most metabolites of daidzin were able to be identified with the identical transformation reactions. The study revealed the rationality of daidzin biotransformation at the new perspective, and constructs a new model for fecal metabolites of compounds. These results will also broaden the continued research on daidzin.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.