Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, Roberta Zambrini
{"title":"具有光量子态的神经网络。","authors":"Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, Roberta Zambrini","doi":"10.1098/rsta.2023.0346","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical ML and the potential advantages of ANNs in circuit designs and beyond, in more general, analogue settings characterized by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230346"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks with quantum states of light.\",\"authors\":\"Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, Roberta Zambrini\",\"doi\":\"10.1098/rsta.2023.0346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical ML and the potential advantages of ANNs in circuit designs and beyond, in more general, analogue settings characterized by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.This article is part of the theme issue 'The quantum theory of light'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2287\",\"pages\":\"20230346\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0346\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0346","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical ML and the potential advantages of ANNs in circuit designs and beyond, in more general, analogue settings characterized by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.This article is part of the theme issue 'The quantum theory of light'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.