具有光量子态的神经网络。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-12-30 Epub Date: 2024-12-24 DOI:10.1098/rsta.2023.0346
Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, Roberta Zambrini
{"title":"具有光量子态的神经网络。","authors":"Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, Roberta Zambrini","doi":"10.1098/rsta.2023.0346","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical ML and the potential advantages of ANNs in circuit designs and beyond, in more general, analogue settings characterized by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230346"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks with quantum states of light.\",\"authors\":\"Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C Soriano, Roberta Zambrini\",\"doi\":\"10.1098/rsta.2023.0346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical ML and the potential advantages of ANNs in circuit designs and beyond, in more general, analogue settings characterized by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.This article is part of the theme issue 'The quantum theory of light'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2287\",\"pages\":\"20230346\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0346\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0346","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子光网络在解决基本问题和实现从通信到计算以及最近的机器学习(ML)的应用方面发挥了重要作用。特别是,光子人工神经网络(ANNs)提供了利用经典光学和量子光学优势的机会。光子神经启发的计算和机器学习已经在经典环境中得到了成功的证明,而量子光网络已经引发了诸如隐形传态、量子密钥分发和量子计算等突破性应用。我们提出了量子光学机器学习技术的现状和人工神经网络在电路设计及其他方面的潜在优势的观点,在更一般的情况下,以循环和相干复杂相互作用为特征的模拟设置。我们考虑了两种模拟神经启发的应用,即量子储层计算和量子联想记忆,并讨论了量子基板提供的增强功能,强调了光压缩在这种情况下的特定作用。这篇文章是主题“光的量子理论”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks with quantum states of light.

Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical ML and the potential advantages of ANNs in circuit designs and beyond, in more general, analogue settings characterized by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.This article is part of the theme issue 'The quantum theory of light'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
A comprehensive study of quantum arithmetic circuits. Automated polynomial formal verification using generalized binary decision diagram patterns. AxLaM: energy-efficient accelerator design for language models for edge computing. Editorial: new Editor-in-Chief and the 360th anniversary of Philosophical Transactions. Exploiting the lock: leveraging MiG-V's logic locking for secret-data extraction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1