{"title":"从导管原位癌到浸润性乳腺癌:细胞外微环境的预后价值。","authors":"Taylor S Hulahan, Peggi M Angel","doi":"10.1186/s13046-024-03236-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ductal carcinoma in situ (DCIS) is a noninvasive breast disease that variably progresses to invasive breast cancer (IBC). Given the unpredictability of this progression, most DCIS patients are aggressively managed similar to IBC patients. Undoubtedly, this treatment paradigm places many DCIS patients at risk of overtreatment and its significant consequences. Historically, prognostic modeling has included the assessment of clinicopathological features and genomic markers. Although these provide valuable insights into tumor biology, they remain insufficient to predict which DCIS patients will progress to IBC. Contemporary work has begun to focus on the microenvironment surrounding the ductal cells for molecular patterns that might predict progression. In this review, extracellular microenvironment alterations occurring with the malignant transformation from DCIS to IBC are detailed. Not only do changes in collagen abundance, organization, and localization mediate the transition to IBC, but also the discrete post-translational regulation of collagen fibers is understood to promote invasion. Other extracellular matrix proteins, such as matrix metalloproteases, decorin, and tenascin C, have been characterized for their role in invasive transformation and further demonstrate the prognostic value of the extracellular matrix. Importantly, these extracellular matrix proteins influence immune cells and fibroblasts toward pro-tumorigenic phenotypes. Thus, the progressive changes in the extracellular microenvironment play a key role in invasion and provide promise for prognostic development.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"329"},"PeriodicalIF":11.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664872/pdf/","citationCount":"0","resultStr":"{\"title\":\"From ductal carcinoma in situ to invasive breast cancer: the prognostic value of the extracellular microenvironment.\",\"authors\":\"Taylor S Hulahan, Peggi M Angel\",\"doi\":\"10.1186/s13046-024-03236-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ductal carcinoma in situ (DCIS) is a noninvasive breast disease that variably progresses to invasive breast cancer (IBC). Given the unpredictability of this progression, most DCIS patients are aggressively managed similar to IBC patients. Undoubtedly, this treatment paradigm places many DCIS patients at risk of overtreatment and its significant consequences. Historically, prognostic modeling has included the assessment of clinicopathological features and genomic markers. Although these provide valuable insights into tumor biology, they remain insufficient to predict which DCIS patients will progress to IBC. Contemporary work has begun to focus on the microenvironment surrounding the ductal cells for molecular patterns that might predict progression. In this review, extracellular microenvironment alterations occurring with the malignant transformation from DCIS to IBC are detailed. Not only do changes in collagen abundance, organization, and localization mediate the transition to IBC, but also the discrete post-translational regulation of collagen fibers is understood to promote invasion. Other extracellular matrix proteins, such as matrix metalloproteases, decorin, and tenascin C, have been characterized for their role in invasive transformation and further demonstrate the prognostic value of the extracellular matrix. Importantly, these extracellular matrix proteins influence immune cells and fibroblasts toward pro-tumorigenic phenotypes. Thus, the progressive changes in the extracellular microenvironment play a key role in invasion and provide promise for prognostic development.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"329\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03236-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03236-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
From ductal carcinoma in situ to invasive breast cancer: the prognostic value of the extracellular microenvironment.
Ductal carcinoma in situ (DCIS) is a noninvasive breast disease that variably progresses to invasive breast cancer (IBC). Given the unpredictability of this progression, most DCIS patients are aggressively managed similar to IBC patients. Undoubtedly, this treatment paradigm places many DCIS patients at risk of overtreatment and its significant consequences. Historically, prognostic modeling has included the assessment of clinicopathological features and genomic markers. Although these provide valuable insights into tumor biology, they remain insufficient to predict which DCIS patients will progress to IBC. Contemporary work has begun to focus on the microenvironment surrounding the ductal cells for molecular patterns that might predict progression. In this review, extracellular microenvironment alterations occurring with the malignant transformation from DCIS to IBC are detailed. Not only do changes in collagen abundance, organization, and localization mediate the transition to IBC, but also the discrete post-translational regulation of collagen fibers is understood to promote invasion. Other extracellular matrix proteins, such as matrix metalloproteases, decorin, and tenascin C, have been characterized for their role in invasive transformation and further demonstrate the prognostic value of the extracellular matrix. Importantly, these extracellular matrix proteins influence immune cells and fibroblasts toward pro-tumorigenic phenotypes. Thus, the progressive changes in the extracellular microenvironment play a key role in invasion and provide promise for prognostic development.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.