Oscar Cipolato, Matthias Fauconneau, Paige J. LeValley, Robert Nißler, Benjamin Suter, Inge K. Herrmann
{"title":"一种用于术中可视化、引导和荧光温度监测的增强现实遮阳板。","authors":"Oscar Cipolato, Matthias Fauconneau, Paige J. LeValley, Robert Nißler, Benjamin Suter, Inge K. Herrmann","doi":"10.1002/jbio.202400417","DOIUrl":null,"url":null,"abstract":"<p>Fluorescence-guided surgeries, including tumor resection and tissue soldering, are advancing the frontiers of surgical precision by offering enhanced control that minimizes tissue damage, improving recovery and outcomes. However, integrating fluorescence visualization with real-time temperature monitoring remains a challenge, limiting broader clinical use. We address this issue with an augmented reality (AR) visor that combines nanomaterial excitation, fluorescence detection, and temperature monitoring. Using advanced fluorescent nanoparticles like indocyanine green-doped particles and carbon nanotubes, the visor provides a comprehensive view of both the surgical field and sub-surface conditions invisible to the naked eye. This integration improves the safety and efficacy of fluorescence-guided surgeries, including laser tissue soldering, by ensuring optimal temperatures and laser guidance in real time. The presented technology enhances existing surgical techniques and supports the development of new strategies and sensing technologies in areas where traditional methods fall short, marking significant progress in precision surgery and potentially improving patient care.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400417","citationCount":"0","resultStr":"{\"title\":\"An Augmented Reality Visor for Intraoperative Visualization, Guidance, and Temperature Monitoring Using Fluorescence\",\"authors\":\"Oscar Cipolato, Matthias Fauconneau, Paige J. LeValley, Robert Nißler, Benjamin Suter, Inge K. Herrmann\",\"doi\":\"10.1002/jbio.202400417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluorescence-guided surgeries, including tumor resection and tissue soldering, are advancing the frontiers of surgical precision by offering enhanced control that minimizes tissue damage, improving recovery and outcomes. However, integrating fluorescence visualization with real-time temperature monitoring remains a challenge, limiting broader clinical use. We address this issue with an augmented reality (AR) visor that combines nanomaterial excitation, fluorescence detection, and temperature monitoring. Using advanced fluorescent nanoparticles like indocyanine green-doped particles and carbon nanotubes, the visor provides a comprehensive view of both the surgical field and sub-surface conditions invisible to the naked eye. This integration improves the safety and efficacy of fluorescence-guided surgeries, including laser tissue soldering, by ensuring optimal temperatures and laser guidance in real time. The presented technology enhances existing surgical techniques and supports the development of new strategies and sensing technologies in areas where traditional methods fall short, marking significant progress in precision surgery and potentially improving patient care.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400417\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400417\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400417","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An Augmented Reality Visor for Intraoperative Visualization, Guidance, and Temperature Monitoring Using Fluorescence
Fluorescence-guided surgeries, including tumor resection and tissue soldering, are advancing the frontiers of surgical precision by offering enhanced control that minimizes tissue damage, improving recovery and outcomes. However, integrating fluorescence visualization with real-time temperature monitoring remains a challenge, limiting broader clinical use. We address this issue with an augmented reality (AR) visor that combines nanomaterial excitation, fluorescence detection, and temperature monitoring. Using advanced fluorescent nanoparticles like indocyanine green-doped particles and carbon nanotubes, the visor provides a comprehensive view of both the surgical field and sub-surface conditions invisible to the naked eye. This integration improves the safety and efficacy of fluorescence-guided surgeries, including laser tissue soldering, by ensuring optimal temperatures and laser guidance in real time. The presented technology enhances existing surgical techniques and supports the development of new strategies and sensing technologies in areas where traditional methods fall short, marking significant progress in precision surgery and potentially improving patient care.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.