{"title":"准时太阳跟踪器对农田土壤生物多样性的影响","authors":"Leroy Valentine, Decocq Guillaume, Noirot-Cosson Paul-Emile, Marrec Ronan","doi":"10.1016/j.geoderma.2024.117147","DOIUrl":null,"url":null,"abstract":"The development of renewable energy technologies is growing rapidly, with solar energy being the most promising source. Agrivoltaics in particular offers the advantage to combine crop and energy production on the same land. While many studies have looked at the impact of ground-mounted solar power panels on uncultivated grassland, very few have focused on agrivoltaic structures, and none on dual axis trackers with bi-dimensional turning mount-holding panels and limited ground anchorage. Our study focused on the relative impact of such trackers (via anchorage constraint to farming practices, and mobile shading) on the physical, chemical and biological soil features in both wheat croplands and meadows relative to farming practices known for impacting these features. Using a PLS-PM analysis, we show that despite altered chemicals conditions near the tracker and the higher specific plant richness brought by the PV structure, thereby changing environmental conditions, there are no significant effects on organisms compared to agricultural practices. Comparing hay meadows and wheat fields suggests varied impacts, prompting the need for further comparative studies across different agricultural contexts.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"8 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of punctual solar trackers on soil biodiversity in agricultural lands\",\"authors\":\"Leroy Valentine, Decocq Guillaume, Noirot-Cosson Paul-Emile, Marrec Ronan\",\"doi\":\"10.1016/j.geoderma.2024.117147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of renewable energy technologies is growing rapidly, with solar energy being the most promising source. Agrivoltaics in particular offers the advantage to combine crop and energy production on the same land. While many studies have looked at the impact of ground-mounted solar power panels on uncultivated grassland, very few have focused on agrivoltaic structures, and none on dual axis trackers with bi-dimensional turning mount-holding panels and limited ground anchorage. Our study focused on the relative impact of such trackers (via anchorage constraint to farming practices, and mobile shading) on the physical, chemical and biological soil features in both wheat croplands and meadows relative to farming practices known for impacting these features. Using a PLS-PM analysis, we show that despite altered chemicals conditions near the tracker and the higher specific plant richness brought by the PV structure, thereby changing environmental conditions, there are no significant effects on organisms compared to agricultural practices. Comparing hay meadows and wheat fields suggests varied impacts, prompting the need for further comparative studies across different agricultural contexts.\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geoderma.2024.117147\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2024.117147","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Impacts of punctual solar trackers on soil biodiversity in agricultural lands
The development of renewable energy technologies is growing rapidly, with solar energy being the most promising source. Agrivoltaics in particular offers the advantage to combine crop and energy production on the same land. While many studies have looked at the impact of ground-mounted solar power panels on uncultivated grassland, very few have focused on agrivoltaic structures, and none on dual axis trackers with bi-dimensional turning mount-holding panels and limited ground anchorage. Our study focused on the relative impact of such trackers (via anchorage constraint to farming practices, and mobile shading) on the physical, chemical and biological soil features in both wheat croplands and meadows relative to farming practices known for impacting these features. Using a PLS-PM analysis, we show that despite altered chemicals conditions near the tracker and the higher specific plant richness brought by the PV structure, thereby changing environmental conditions, there are no significant effects on organisms compared to agricultural practices. Comparing hay meadows and wheat fields suggests varied impacts, prompting the need for further comparative studies across different agricultural contexts.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.