Ruijie Jiang , Hui Lu , Kun Yang , Hiroshi Cho , Dai Yamazaki
{"title":"CONUS中不同空间分辨率下CaMa-Flood路由模型的洪水模拟分析与比较","authors":"Ruijie Jiang , Hui Lu , Kun Yang , Hiroshi Cho , Dai Yamazaki","doi":"10.1016/j.envsoft.2024.106305","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate flood modelling is crucial for disaster prevention. Fine-resolution global routing models can offer more detailed flood information, but balancing model efficiency with accuracy remains challenging. This study examines the conditions under which a fine-resolution model outperforms a coarser one, using the CaMa-Flood model at 0.05°, 0.083°, 0.1°, and 0.25° resolutions across the contiguous United States. The results indicate finer resolution does not improve the simulation of flood timing, but better simulates the daily river discharge and flood peak flow due to better representation of the river network in small rivers. Notably, the improvement in daily discharge simulation is greater than that in peak flow. Nevertheless, uncertainties in channel parameters mean that a more detailed river network does not necessarily yield better flood simulations. For rivers with upstream drainage areas greater than 500 km<sup>2</sup>, a 0.25° model is sufficient if high-precision channel parameters are unavailable.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106305"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and comparison of the flood simulations with the routing model CaMa-Flood at different spatial resolutions in the CONUS\",\"authors\":\"Ruijie Jiang , Hui Lu , Kun Yang , Hiroshi Cho , Dai Yamazaki\",\"doi\":\"10.1016/j.envsoft.2024.106305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate flood modelling is crucial for disaster prevention. Fine-resolution global routing models can offer more detailed flood information, but balancing model efficiency with accuracy remains challenging. This study examines the conditions under which a fine-resolution model outperforms a coarser one, using the CaMa-Flood model at 0.05°, 0.083°, 0.1°, and 0.25° resolutions across the contiguous United States. The results indicate finer resolution does not improve the simulation of flood timing, but better simulates the daily river discharge and flood peak flow due to better representation of the river network in small rivers. Notably, the improvement in daily discharge simulation is greater than that in peak flow. Nevertheless, uncertainties in channel parameters mean that a more detailed river network does not necessarily yield better flood simulations. For rivers with upstream drainage areas greater than 500 km<sup>2</sup>, a 0.25° model is sufficient if high-precision channel parameters are unavailable.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106305\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003669\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003669","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analysis and comparison of the flood simulations with the routing model CaMa-Flood at different spatial resolutions in the CONUS
Accurate flood modelling is crucial for disaster prevention. Fine-resolution global routing models can offer more detailed flood information, but balancing model efficiency with accuracy remains challenging. This study examines the conditions under which a fine-resolution model outperforms a coarser one, using the CaMa-Flood model at 0.05°, 0.083°, 0.1°, and 0.25° resolutions across the contiguous United States. The results indicate finer resolution does not improve the simulation of flood timing, but better simulates the daily river discharge and flood peak flow due to better representation of the river network in small rivers. Notably, the improvement in daily discharge simulation is greater than that in peak flow. Nevertheless, uncertainties in channel parameters mean that a more detailed river network does not necessarily yield better flood simulations. For rivers with upstream drainage areas greater than 500 km2, a 0.25° model is sufficient if high-precision channel parameters are unavailable.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.