{"title":"18.5 ka以来西风带与东亚冬季风交替优势对青藏高原东北部沙尘活动的影响","authors":"Hao Long, Yun Cai, Jingran Zhang, Liangqing Cheng, Linhai Yang, Hongyi Cheng","doi":"10.1016/j.gloplacha.2024.104684","DOIUrl":null,"url":null,"abstract":"The mid-latitude Westerlies and the East Asian winter monsoon (EAWM) are two major atmospheric circulation systems influencing dust activities in the Northern Hemisphere (NH). However, the interplay between these wind systems and their effects on regional dust activities remain poorly understood. In this study, we present a well-dated aeolian sedimentary sequence from the loess section (ZES) on the southern slope of the Qilian Mountains in the northeastern Qinghai-Tibetan Plateau (NE-QTP). It provides insights into the response of dust activities to these wind systems for the last 18.5 ka. We developed a detailed chronology for ZES section based on luminescence dating of multiple signals from 29 samples (yielding a total of 87 ages). The luminescence sensitivities and element analysis of the sediments indicate a shift in dust source around 7.5 ka, contributed to a transition in the atmospheric circulation controls of the NE-QTP. Specially, our findings suggest that dust activity was likely dominated by EAWM from 18.5 ka to 7.5 ka and by the Westerlies after 7.5 ka across this area. We propose that increased NH ice volume (NHIV) significantly enhanced the EAWM via strengthening Siberian High, driving dust activities over the high mountains during the Last Deglaciation and Early Holocene. In contrast, as NHIV decreased during the middle-to-late Holocene, the EAWM weakened and retreated from this area, allowing the Westerlies to dominate dust activities. Additionally, grain-size parameters of sediments were used to infer variations in the intensities of these winds, revealing a gradual weakening of EAWM since the Last Deglaciation and a marked intensification of the Westerlies during the warm middle Holocene. Under the current global warming scenario, we predict that the Westerlies will continue to dominate dust activities across the NE-QTP, with a potential increase in dust activities if the Westerlies enhance.","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"11 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternating dominance of Westerlies and East Asian winter monsoon on dust activities across the northeastern Qinghai-Tibet Plateau since 18.5 ka\",\"authors\":\"Hao Long, Yun Cai, Jingran Zhang, Liangqing Cheng, Linhai Yang, Hongyi Cheng\",\"doi\":\"10.1016/j.gloplacha.2024.104684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mid-latitude Westerlies and the East Asian winter monsoon (EAWM) are two major atmospheric circulation systems influencing dust activities in the Northern Hemisphere (NH). However, the interplay between these wind systems and their effects on regional dust activities remain poorly understood. In this study, we present a well-dated aeolian sedimentary sequence from the loess section (ZES) on the southern slope of the Qilian Mountains in the northeastern Qinghai-Tibetan Plateau (NE-QTP). It provides insights into the response of dust activities to these wind systems for the last 18.5 ka. We developed a detailed chronology for ZES section based on luminescence dating of multiple signals from 29 samples (yielding a total of 87 ages). The luminescence sensitivities and element analysis of the sediments indicate a shift in dust source around 7.5 ka, contributed to a transition in the atmospheric circulation controls of the NE-QTP. Specially, our findings suggest that dust activity was likely dominated by EAWM from 18.5 ka to 7.5 ka and by the Westerlies after 7.5 ka across this area. We propose that increased NH ice volume (NHIV) significantly enhanced the EAWM via strengthening Siberian High, driving dust activities over the high mountains during the Last Deglaciation and Early Holocene. In contrast, as NHIV decreased during the middle-to-late Holocene, the EAWM weakened and retreated from this area, allowing the Westerlies to dominate dust activities. Additionally, grain-size parameters of sediments were used to infer variations in the intensities of these winds, revealing a gradual weakening of EAWM since the Last Deglaciation and a marked intensification of the Westerlies during the warm middle Holocene. Under the current global warming scenario, we predict that the Westerlies will continue to dominate dust activities across the NE-QTP, with a potential increase in dust activities if the Westerlies enhance.\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gloplacha.2024.104684\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2024.104684","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Alternating dominance of Westerlies and East Asian winter monsoon on dust activities across the northeastern Qinghai-Tibet Plateau since 18.5 ka
The mid-latitude Westerlies and the East Asian winter monsoon (EAWM) are two major atmospheric circulation systems influencing dust activities in the Northern Hemisphere (NH). However, the interplay between these wind systems and their effects on regional dust activities remain poorly understood. In this study, we present a well-dated aeolian sedimentary sequence from the loess section (ZES) on the southern slope of the Qilian Mountains in the northeastern Qinghai-Tibetan Plateau (NE-QTP). It provides insights into the response of dust activities to these wind systems for the last 18.5 ka. We developed a detailed chronology for ZES section based on luminescence dating of multiple signals from 29 samples (yielding a total of 87 ages). The luminescence sensitivities and element analysis of the sediments indicate a shift in dust source around 7.5 ka, contributed to a transition in the atmospheric circulation controls of the NE-QTP. Specially, our findings suggest that dust activity was likely dominated by EAWM from 18.5 ka to 7.5 ka and by the Westerlies after 7.5 ka across this area. We propose that increased NH ice volume (NHIV) significantly enhanced the EAWM via strengthening Siberian High, driving dust activities over the high mountains during the Last Deglaciation and Early Holocene. In contrast, as NHIV decreased during the middle-to-late Holocene, the EAWM weakened and retreated from this area, allowing the Westerlies to dominate dust activities. Additionally, grain-size parameters of sediments were used to infer variations in the intensities of these winds, revealing a gradual weakening of EAWM since the Last Deglaciation and a marked intensification of the Westerlies during the warm middle Holocene. Under the current global warming scenario, we predict that the Westerlies will continue to dominate dust activities across the NE-QTP, with a potential increase in dust activities if the Westerlies enhance.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.