埃迪卡拉-寒武纪过渡时期的氮循环和海洋氧化还原演化

IF 4 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Global and Planetary Change Pub Date : 2024-12-18 DOI:10.1016/j.gloplacha.2024.104679
Chao Chang, Thomas J. Algeo
{"title":"埃迪卡拉-寒武纪过渡时期的氮循环和海洋氧化还原演化","authors":"Chao Chang, Thomas J. Algeo","doi":"10.1016/j.gloplacha.2024.104679","DOIUrl":null,"url":null,"abstract":"The Cambrian Explosion was an unprecedented bioevolutionary event that witnessed rapid diversification of marine invertebrate phyla and establishment of metazoan-dominated marine ecosystems. Nitrogen is a critical nutrient element essential for all life on Earth, and its biogeochemical cycling in the ocean is tightly associated with marine redox conditions. Numerous nitrogen isotope investigations of the Ediacaran-Cambrian (<ce:italic>E</ce:italic>-C) transition have been undertaken, but an integrated analysis of contemporaneous nitrogen cycling has not been achieved yet. Here, we compile published nitrogen isotope data for the South China Craton over the interval from ∼550 Ma (late Ediacaran) to ∼514 Ma (late Stage 3 of early Cambrian) with the goals of identifying key changes in the nitrogen cycle and their relationship to marine redox evolution and the Cambrian Explosion. Combined with independent redox proxy data, our δ<ce:sup loc=\"post\">15</ce:sup>N dataset provides insights into spatio-temporal variation in rates of denitrification and N<ce:inf loc=\"post\">2</ce:inf> fixation induced by marine redox fluctuations, which constrains the distribution of suboxic environments and the relative position of the oceanic redoxcline. On this basis, we propose a new model of marine nitrogen-cycle evolution during the E–C transition in which (1) nitrate availability modulated the ecological development and distribution of eukaryotic primary producers, and (2) nitrate-replete ecological niches for eukaryotic primary producers, especially benthic algae expanded significantly during Cambrian Age 3, and (3) increasing biological pump efficiency promoted organic burial and net O<ce:inf loc=\"post\">2</ce:inf> release, thus contributing to oceanic oxygenation and the radiation of early animals.","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"25 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen cycling and marine redox evolution during the Ediacaran–Cambrian transition\",\"authors\":\"Chao Chang, Thomas J. Algeo\",\"doi\":\"10.1016/j.gloplacha.2024.104679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cambrian Explosion was an unprecedented bioevolutionary event that witnessed rapid diversification of marine invertebrate phyla and establishment of metazoan-dominated marine ecosystems. Nitrogen is a critical nutrient element essential for all life on Earth, and its biogeochemical cycling in the ocean is tightly associated with marine redox conditions. Numerous nitrogen isotope investigations of the Ediacaran-Cambrian (<ce:italic>E</ce:italic>-C) transition have been undertaken, but an integrated analysis of contemporaneous nitrogen cycling has not been achieved yet. Here, we compile published nitrogen isotope data for the South China Craton over the interval from ∼550 Ma (late Ediacaran) to ∼514 Ma (late Stage 3 of early Cambrian) with the goals of identifying key changes in the nitrogen cycle and their relationship to marine redox evolution and the Cambrian Explosion. Combined with independent redox proxy data, our δ<ce:sup loc=\\\"post\\\">15</ce:sup>N dataset provides insights into spatio-temporal variation in rates of denitrification and N<ce:inf loc=\\\"post\\\">2</ce:inf> fixation induced by marine redox fluctuations, which constrains the distribution of suboxic environments and the relative position of the oceanic redoxcline. On this basis, we propose a new model of marine nitrogen-cycle evolution during the E–C transition in which (1) nitrate availability modulated the ecological development and distribution of eukaryotic primary producers, and (2) nitrate-replete ecological niches for eukaryotic primary producers, especially benthic algae expanded significantly during Cambrian Age 3, and (3) increasing biological pump efficiency promoted organic burial and net O<ce:inf loc=\\\"post\\\">2</ce:inf> release, thus contributing to oceanic oxygenation and the radiation of early animals.\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gloplacha.2024.104679\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2024.104679","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

寒武纪大爆发是一次史无前例的生物进化事件,它见证了海洋无脊椎动物门的快速多样化和以后生动物为主的海洋生态系统的建立。氮是地球上所有生命必需的重要营养元素,其在海洋中的生物地球化学循环与海洋氧化还原条件密切相关。对埃迪卡拉-寒武纪(E-C)过渡时期进行了大量的氮同位素研究,但尚未对同期氮循环进行综合分析。在此,我们整理了从~ 550 Ma(埃迪卡拉晚期)到~ 514 Ma(早寒武纪第三期晚期)的华南克拉通氮同位素数据,目的是确定氮循环的关键变化及其与海洋氧化还原演化和寒武纪大爆发的关系。结合独立的氧化还原代理数据,我们的δ15N数据揭示了海洋氧化还原波动引起的反硝化和N2固定速率的时空变化,这限制了亚氧环境的分布和海洋氧化还原的相对位置。在此基础上,我们提出了一个新的E-C过渡时期海洋氮循环演化模型,其中:(1)硝酸盐有效性调节了真核初级生产者的生态发展和分布;(2)寒武纪第3期真核初级生产者,特别是底栖藻类的硝酸盐生态位显著扩大;(3)生物泵效率的提高促进了有机埋藏和净O2释放。从而促进了海洋的氧化作用和早期动物的辐射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen cycling and marine redox evolution during the Ediacaran–Cambrian transition
The Cambrian Explosion was an unprecedented bioevolutionary event that witnessed rapid diversification of marine invertebrate phyla and establishment of metazoan-dominated marine ecosystems. Nitrogen is a critical nutrient element essential for all life on Earth, and its biogeochemical cycling in the ocean is tightly associated with marine redox conditions. Numerous nitrogen isotope investigations of the Ediacaran-Cambrian (E-C) transition have been undertaken, but an integrated analysis of contemporaneous nitrogen cycling has not been achieved yet. Here, we compile published nitrogen isotope data for the South China Craton over the interval from ∼550 Ma (late Ediacaran) to ∼514 Ma (late Stage 3 of early Cambrian) with the goals of identifying key changes in the nitrogen cycle and their relationship to marine redox evolution and the Cambrian Explosion. Combined with independent redox proxy data, our δ15N dataset provides insights into spatio-temporal variation in rates of denitrification and N2 fixation induced by marine redox fluctuations, which constrains the distribution of suboxic environments and the relative position of the oceanic redoxcline. On this basis, we propose a new model of marine nitrogen-cycle evolution during the E–C transition in which (1) nitrate availability modulated the ecological development and distribution of eukaryotic primary producers, and (2) nitrate-replete ecological niches for eukaryotic primary producers, especially benthic algae expanded significantly during Cambrian Age 3, and (3) increasing biological pump efficiency promoted organic burial and net O2 release, thus contributing to oceanic oxygenation and the radiation of early animals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global and Planetary Change
Global and Planetary Change 地学天文-地球科学综合
CiteScore
7.40
自引率
10.30%
发文量
226
审稿时长
63 days
期刊介绍: The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems. Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged. Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.
期刊最新文献
Gallium behavior and isotopic compositions in marine siliceous sediments from the southern Mariana Trench Population migration with improved productivity caused a heterogeneity pattern of Holocene vegetation succession in typical areas of the lower Yangtze region Flood occurrences and characteristics in Poland (Central Europe) in the last millennium Using seasonal palaeo-flow reconstructions and artificial neural networks for daily water balance modelling: A case study from Tasmania, Australia Enhanced human activities have disturbed the vegetation-climate relationship over the last millennium in the Changbai Mountains, north-east China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1