{"title":"埃迪卡拉-寒武纪过渡时期的氮循环和海洋氧化还原演化","authors":"Chao Chang, Thomas J. Algeo","doi":"10.1016/j.gloplacha.2024.104679","DOIUrl":null,"url":null,"abstract":"The Cambrian Explosion was an unprecedented bioevolutionary event that witnessed rapid diversification of marine invertebrate phyla and establishment of metazoan-dominated marine ecosystems. Nitrogen is a critical nutrient element essential for all life on Earth, and its biogeochemical cycling in the ocean is tightly associated with marine redox conditions. Numerous nitrogen isotope investigations of the Ediacaran-Cambrian (<ce:italic>E</ce:italic>-C) transition have been undertaken, but an integrated analysis of contemporaneous nitrogen cycling has not been achieved yet. Here, we compile published nitrogen isotope data for the South China Craton over the interval from ∼550 Ma (late Ediacaran) to ∼514 Ma (late Stage 3 of early Cambrian) with the goals of identifying key changes in the nitrogen cycle and their relationship to marine redox evolution and the Cambrian Explosion. Combined with independent redox proxy data, our δ<ce:sup loc=\"post\">15</ce:sup>N dataset provides insights into spatio-temporal variation in rates of denitrification and N<ce:inf loc=\"post\">2</ce:inf> fixation induced by marine redox fluctuations, which constrains the distribution of suboxic environments and the relative position of the oceanic redoxcline. On this basis, we propose a new model of marine nitrogen-cycle evolution during the E–C transition in which (1) nitrate availability modulated the ecological development and distribution of eukaryotic primary producers, and (2) nitrate-replete ecological niches for eukaryotic primary producers, especially benthic algae expanded significantly during Cambrian Age 3, and (3) increasing biological pump efficiency promoted organic burial and net O<ce:inf loc=\"post\">2</ce:inf> release, thus contributing to oceanic oxygenation and the radiation of early animals.","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"25 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen cycling and marine redox evolution during the Ediacaran–Cambrian transition\",\"authors\":\"Chao Chang, Thomas J. Algeo\",\"doi\":\"10.1016/j.gloplacha.2024.104679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cambrian Explosion was an unprecedented bioevolutionary event that witnessed rapid diversification of marine invertebrate phyla and establishment of metazoan-dominated marine ecosystems. Nitrogen is a critical nutrient element essential for all life on Earth, and its biogeochemical cycling in the ocean is tightly associated with marine redox conditions. Numerous nitrogen isotope investigations of the Ediacaran-Cambrian (<ce:italic>E</ce:italic>-C) transition have been undertaken, but an integrated analysis of contemporaneous nitrogen cycling has not been achieved yet. Here, we compile published nitrogen isotope data for the South China Craton over the interval from ∼550 Ma (late Ediacaran) to ∼514 Ma (late Stage 3 of early Cambrian) with the goals of identifying key changes in the nitrogen cycle and their relationship to marine redox evolution and the Cambrian Explosion. Combined with independent redox proxy data, our δ<ce:sup loc=\\\"post\\\">15</ce:sup>N dataset provides insights into spatio-temporal variation in rates of denitrification and N<ce:inf loc=\\\"post\\\">2</ce:inf> fixation induced by marine redox fluctuations, which constrains the distribution of suboxic environments and the relative position of the oceanic redoxcline. On this basis, we propose a new model of marine nitrogen-cycle evolution during the E–C transition in which (1) nitrate availability modulated the ecological development and distribution of eukaryotic primary producers, and (2) nitrate-replete ecological niches for eukaryotic primary producers, especially benthic algae expanded significantly during Cambrian Age 3, and (3) increasing biological pump efficiency promoted organic burial and net O<ce:inf loc=\\\"post\\\">2</ce:inf> release, thus contributing to oceanic oxygenation and the radiation of early animals.\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gloplacha.2024.104679\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2024.104679","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Nitrogen cycling and marine redox evolution during the Ediacaran–Cambrian transition
The Cambrian Explosion was an unprecedented bioevolutionary event that witnessed rapid diversification of marine invertebrate phyla and establishment of metazoan-dominated marine ecosystems. Nitrogen is a critical nutrient element essential for all life on Earth, and its biogeochemical cycling in the ocean is tightly associated with marine redox conditions. Numerous nitrogen isotope investigations of the Ediacaran-Cambrian (E-C) transition have been undertaken, but an integrated analysis of contemporaneous nitrogen cycling has not been achieved yet. Here, we compile published nitrogen isotope data for the South China Craton over the interval from ∼550 Ma (late Ediacaran) to ∼514 Ma (late Stage 3 of early Cambrian) with the goals of identifying key changes in the nitrogen cycle and their relationship to marine redox evolution and the Cambrian Explosion. Combined with independent redox proxy data, our δ15N dataset provides insights into spatio-temporal variation in rates of denitrification and N2 fixation induced by marine redox fluctuations, which constrains the distribution of suboxic environments and the relative position of the oceanic redoxcline. On this basis, we propose a new model of marine nitrogen-cycle evolution during the E–C transition in which (1) nitrate availability modulated the ecological development and distribution of eukaryotic primary producers, and (2) nitrate-replete ecological niches for eukaryotic primary producers, especially benthic algae expanded significantly during Cambrian Age 3, and (3) increasing biological pump efficiency promoted organic burial and net O2 release, thus contributing to oceanic oxygenation and the radiation of early animals.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.