小胶质细胞耗竭,神经炎性疾病的新工具:CSF-1R药物抑制剂的比较。

IF 5.4 2区 医学 Q1 NEUROSCIENCES Glia Pub Date : 2024-12-24 DOI:10.1002/glia.24664
David Guenoun, Nathan Blaise, Alexandre Sellam, Julie Roupret-Serzec, Alice Jacquens, Juliette Van Steenwinckel, Pierre Gressens, Cindy Bokobza
{"title":"小胶质细胞耗竭,神经炎性疾病的新工具:CSF-1R药物抑制剂的比较。","authors":"David Guenoun, Nathan Blaise, Alexandre Sellam, Julie Roupret-Serzec, Alice Jacquens, Juliette Van Steenwinckel, Pierre Gressens, Cindy Bokobza","doi":"10.1002/glia.24664","DOIUrl":null,"url":null,"abstract":"<p><p>A growing body of evidence highlights the importance of microglia, the resident immune cells of the CNS, and their pro-inflammatory activation in the onset of many neurological diseases. Microglial proliferation, differentiation, and survival are highly dependent on the CSF-1 signaling pathway, which can be pharmacologically modulated by inhibiting its receptor, CSF-1R. Pharmacological inhibition of CSF-1R leads to an almost complete microglial depletion whereas treatment arrest allows for subsequent repopulation. Microglial depletion has shown promising results in many animal models of neurodegenerative diseases (Alzheimer's disease (AD), Parkinson's disease, or multiple sclerosis) where transitory microglial depletion reduced neuroinflammation and improved behavioral test results. In this review, we will focus on the comparison of three different pharmacological CSF-1R inhibitors (PLX3397, PLX5622, and GW2580) regarding microglial depletion. We will also highlight the promising results obtained by microglial depletion strategies in adult models of neurological disorders and argue they could also prove promising in neurodevelopmental diseases associated with microglial activation and neuroinflammation. Finally, we will discuss the lack of knowledge about the effects of these strategies on neurons, astrocytes, and oligodendrocytes in adults and during neurodevelopment.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglial Depletion, a New Tool in Neuroinflammatory Disorders: Comparison of Pharmacological Inhibitors of the CSF-1R.\",\"authors\":\"David Guenoun, Nathan Blaise, Alexandre Sellam, Julie Roupret-Serzec, Alice Jacquens, Juliette Van Steenwinckel, Pierre Gressens, Cindy Bokobza\",\"doi\":\"10.1002/glia.24664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A growing body of evidence highlights the importance of microglia, the resident immune cells of the CNS, and their pro-inflammatory activation in the onset of many neurological diseases. Microglial proliferation, differentiation, and survival are highly dependent on the CSF-1 signaling pathway, which can be pharmacologically modulated by inhibiting its receptor, CSF-1R. Pharmacological inhibition of CSF-1R leads to an almost complete microglial depletion whereas treatment arrest allows for subsequent repopulation. Microglial depletion has shown promising results in many animal models of neurodegenerative diseases (Alzheimer's disease (AD), Parkinson's disease, or multiple sclerosis) where transitory microglial depletion reduced neuroinflammation and improved behavioral test results. In this review, we will focus on the comparison of three different pharmacological CSF-1R inhibitors (PLX3397, PLX5622, and GW2580) regarding microglial depletion. We will also highlight the promising results obtained by microglial depletion strategies in adult models of neurological disorders and argue they could also prove promising in neurodevelopmental diseases associated with microglial activation and neuroinflammation. Finally, we will discuss the lack of knowledge about the effects of these strategies on neurons, astrocytes, and oligodendrocytes in adults and during neurodevelopment.</p>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/glia.24664\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.24664","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据强调了小胶质细胞(中枢神经系统的常驻免疫细胞)的重要性,以及它们在许多神经系统疾病发病中的促炎激活。小胶质细胞的增殖、分化和存活高度依赖于CSF-1信号通路,可通过抑制其受体CSF-1R进行药理学调节。CSF-1R的药物抑制导致几乎完全的小胶质细胞耗竭,而治疗抑制则允许随后的再生。在许多神经退行性疾病(阿尔茨海默病(AD)、帕金森氏病或多发性硬化症)的动物模型中,短暂的小胶质细胞消耗减少了神经炎症,改善了行为测试结果。在这篇综述中,我们将重点比较三种不同的CSF-1R抑制剂(PLX3397, PLX5622和GW2580)对小胶质细胞耗竭的影响。我们还将强调小胶质细胞耗竭策略在成人神经疾病模型中获得的有希望的结果,并认为它们也可能在与小胶质细胞激活和神经炎症相关的神经发育疾病中证明是有希望的。最后,我们将讨论这些策略在成人和神经发育过程中对神经元、星形胶质细胞和少突胶质细胞的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microglial Depletion, a New Tool in Neuroinflammatory Disorders: Comparison of Pharmacological Inhibitors of the CSF-1R.

A growing body of evidence highlights the importance of microglia, the resident immune cells of the CNS, and their pro-inflammatory activation in the onset of many neurological diseases. Microglial proliferation, differentiation, and survival are highly dependent on the CSF-1 signaling pathway, which can be pharmacologically modulated by inhibiting its receptor, CSF-1R. Pharmacological inhibition of CSF-1R leads to an almost complete microglial depletion whereas treatment arrest allows for subsequent repopulation. Microglial depletion has shown promising results in many animal models of neurodegenerative diseases (Alzheimer's disease (AD), Parkinson's disease, or multiple sclerosis) where transitory microglial depletion reduced neuroinflammation and improved behavioral test results. In this review, we will focus on the comparison of three different pharmacological CSF-1R inhibitors (PLX3397, PLX5622, and GW2580) regarding microglial depletion. We will also highlight the promising results obtained by microglial depletion strategies in adult models of neurological disorders and argue they could also prove promising in neurodevelopmental diseases associated with microglial activation and neuroinflammation. Finally, we will discuss the lack of knowledge about the effects of these strategies on neurons, astrocytes, and oligodendrocytes in adults and during neurodevelopment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
期刊最新文献
Correction to "Early Nuclear Phenotypes and Reactive Transformation in Human iPSC-Derived Astrocytes From ALS Patients With SOD1 Mutations". The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. AA147 Alleviates Symptoms in a Mouse Model of Multiple Sclerosis by Reducing Oligodendrocyte Loss. Myelination Trajectory and Microglial Dynamics Following Repeated Sevoflurane Exposure in Developing Brain. Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1