以解剖为中心的深度学习提高了骶髂炎放射学检测的通用性和进展预测。

IF 5.1 2区 医学 Q1 RHEUMATOLOGY RMD Open Pub Date : 2024-12-23 DOI:10.1136/rmdopen-2024-004628
Felix J Dorfner, Janis L Vahldiek, Leonhard Donle, Andrei Zhukov, Lina Xu, Hartmut Häntze, Marcus R Makowski, Hugo J W L Aerts, Fabian Proft, Valeria Rios Rodriguez, Judith Rademacher, Mikhail Protopopov, Hildrun Haibel, Kay-Geert Hermann, Torsten Diekhoff, Lisa C Adams, Murat Torgutalp, Denis Poddubnyy, Keno K Bressem
{"title":"以解剖为中心的深度学习提高了骶髂炎放射学检测的通用性和进展预测。","authors":"Felix J Dorfner, Janis L Vahldiek, Leonhard Donle, Andrei Zhukov, Lina Xu, Hartmut Häntze, Marcus R Makowski, Hugo J W L Aerts, Fabian Proft, Valeria Rios Rodriguez, Judith Rademacher, Mikhail Protopopov, Hildrun Haibel, Kay-Geert Hermann, Torsten Diekhoff, Lisa C Adams, Murat Torgutalp, Denis Poddubnyy, Keno K Bressem","doi":"10.1136/rmdopen-2024-004628","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To examine whether incorporating anatomy-centred deep learning can improve generalisability and enable prediction of disease progression.</p><p><strong>Methods: </strong>This retrospective multicentre study included conventional pelvic radiographs of four different patient cohorts focusing on axial spondyloarthritis collected at university and community hospitals. The first cohort, which consisted of 1483 radiographs, was split into training (n=1261) and validation (n=222) sets. The other cohorts comprising 436, 340 and 163 patients, respectively, were used as independent test datasets. For the second cohort, follow-up data of 311 patients was used to examine progression prediction capabilities. Two neural networks were trained, one on images cropped to the bounding box of the sacroiliac joints (anatomy-centred) and the other one on full radiographs. The performance of the models was compared using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity.</p><p><strong>Results: </strong>On the three test datasets, the standard model achieved AUC scores of 0.853, 0.817, 0.947, with an accuracy of 0.770, 0.724, 0.850. Whereas the anatomy-centred model achieved AUC scores of 0.899, 0.846, 0.957, with an accuracy of 0.821, 0.744, 0.906, respectively. The patients who were identified as high risk by the anatomy-centred model had an OR of 2.16 (95% CI 1.19, 3.86) for having progression of radiographic sacroiliitis within 2 years.</p><p><strong>Conclusion: </strong>Anatomy-centred deep learning can improve the generalisability of models in detecting radiographic sacroiliitis. The model is published as fully open source alongside this study.</p>","PeriodicalId":21396,"journal":{"name":"RMD Open","volume":"10 4","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anatomy-centred deep learning improves generalisability and progression prediction in radiographic sacroiliitis detection.\",\"authors\":\"Felix J Dorfner, Janis L Vahldiek, Leonhard Donle, Andrei Zhukov, Lina Xu, Hartmut Häntze, Marcus R Makowski, Hugo J W L Aerts, Fabian Proft, Valeria Rios Rodriguez, Judith Rademacher, Mikhail Protopopov, Hildrun Haibel, Kay-Geert Hermann, Torsten Diekhoff, Lisa C Adams, Murat Torgutalp, Denis Poddubnyy, Keno K Bressem\",\"doi\":\"10.1136/rmdopen-2024-004628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To examine whether incorporating anatomy-centred deep learning can improve generalisability and enable prediction of disease progression.</p><p><strong>Methods: </strong>This retrospective multicentre study included conventional pelvic radiographs of four different patient cohorts focusing on axial spondyloarthritis collected at university and community hospitals. The first cohort, which consisted of 1483 radiographs, was split into training (n=1261) and validation (n=222) sets. The other cohorts comprising 436, 340 and 163 patients, respectively, were used as independent test datasets. For the second cohort, follow-up data of 311 patients was used to examine progression prediction capabilities. Two neural networks were trained, one on images cropped to the bounding box of the sacroiliac joints (anatomy-centred) and the other one on full radiographs. The performance of the models was compared using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity.</p><p><strong>Results: </strong>On the three test datasets, the standard model achieved AUC scores of 0.853, 0.817, 0.947, with an accuracy of 0.770, 0.724, 0.850. Whereas the anatomy-centred model achieved AUC scores of 0.899, 0.846, 0.957, with an accuracy of 0.821, 0.744, 0.906, respectively. The patients who were identified as high risk by the anatomy-centred model had an OR of 2.16 (95% CI 1.19, 3.86) for having progression of radiographic sacroiliitis within 2 years.</p><p><strong>Conclusion: </strong>Anatomy-centred deep learning can improve the generalisability of models in detecting radiographic sacroiliitis. The model is published as fully open source alongside this study.</p>\",\"PeriodicalId\":21396,\"journal\":{\"name\":\"RMD Open\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RMD Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/rmdopen-2024-004628\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RMD Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rmdopen-2024-004628","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究结合以解剖为中心的深度学习是否可以提高通用性并能够预测疾病进展。方法:这项回顾性多中心研究包括在大学和社区医院收集的四个不同的轴型脊柱炎患者队列的常规骨盆x线片。第一个队列包括1483张x线片,分为训练组(n=1261)和验证组(n=222)。其他队列分别包括436、340和163名患者,作为独立的测试数据集。对于第二队列,311例患者的随访数据用于检查进展预测能力。两个神经网络被训练,一个在裁剪到骶髂关节边界框的图像上(以解剖学为中心),另一个在完整的x光片上。采用受试者工作特征曲线下面积(AUC)、准确度、灵敏度和特异性对模型的性能进行比较。结果:在三个测试数据集上,标准模型的AUC得分分别为0.853、0.817、0.947,准确率分别为0.770、0.724、0.850。而以解剖为中心的模型AUC得分分别为0.899、0.846、0.957,准确率分别为0.821、0.744、0.906。通过以解剖为中心的模型确定为高风险的患者在2年内发生影像学骶髂炎进展的OR为2.16 (95% CI 1.19, 3.86)。结论:以解剖为中心的深度学习可提高骶髂炎影像学检测模型的通用性。该模型与本研究一起作为完全开源发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anatomy-centred deep learning improves generalisability and progression prediction in radiographic sacroiliitis detection.

Purpose: To examine whether incorporating anatomy-centred deep learning can improve generalisability and enable prediction of disease progression.

Methods: This retrospective multicentre study included conventional pelvic radiographs of four different patient cohorts focusing on axial spondyloarthritis collected at university and community hospitals. The first cohort, which consisted of 1483 radiographs, was split into training (n=1261) and validation (n=222) sets. The other cohorts comprising 436, 340 and 163 patients, respectively, were used as independent test datasets. For the second cohort, follow-up data of 311 patients was used to examine progression prediction capabilities. Two neural networks were trained, one on images cropped to the bounding box of the sacroiliac joints (anatomy-centred) and the other one on full radiographs. The performance of the models was compared using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity.

Results: On the three test datasets, the standard model achieved AUC scores of 0.853, 0.817, 0.947, with an accuracy of 0.770, 0.724, 0.850. Whereas the anatomy-centred model achieved AUC scores of 0.899, 0.846, 0.957, with an accuracy of 0.821, 0.744, 0.906, respectively. The patients who were identified as high risk by the anatomy-centred model had an OR of 2.16 (95% CI 1.19, 3.86) for having progression of radiographic sacroiliitis within 2 years.

Conclusion: Anatomy-centred deep learning can improve the generalisability of models in detecting radiographic sacroiliitis. The model is published as fully open source alongside this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RMD Open
RMD Open RHEUMATOLOGY-
CiteScore
7.30
自引率
6.50%
发文量
205
审稿时长
14 weeks
期刊介绍: RMD Open publishes high quality peer-reviewed original research covering the full spectrum of musculoskeletal disorders, rheumatism and connective tissue diseases, including osteoporosis, spine and rehabilitation. Clinical and epidemiological research, basic and translational medicine, interesting clinical cases, and smaller studies that add to the literature are all considered.
期刊最新文献
Correction: Efficacy and safety of filgotinib in patients with rheumatoid arthritis: week 156 interim results from a long- term extension study. Correction: Efficacy and safety of jaktinib hydrochloride tablets in active axial spondyloarthritis: a multicentre, randomised, double-blind, placebo-controlled phase II clinical trial. Distinct clinical outcomes based on multiple serum cytokine and chemokine profiles rather than autoantibody profiles and ultrasound findings in rheumatoid arthritis: a prospective ultrasound cohort study. Trends in work participation among patients with inflammatory rheumatic musculoskeletal diseases (iRMDs): Data from the German National Database (2010-2022). Efficacy and safety of pharmacological treatments in inclusion body myositis: a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1