研究暴露于慢性部分睡眠剥夺和昼夜节律中断作为破坏性干预的大鼠肾脏的恢复能力。

Shirin Rezazadeh , Saeed Rastgoo Salami , Mehran Hosseini , Henrik Oster , Mohammad Reza Saebipour , Mohammad Mehdi Hassanzadeh-Taheri , Hamed Shoorei
{"title":"研究暴露于慢性部分睡眠剥夺和昼夜节律中断作为破坏性干预的大鼠肾脏的恢复能力。","authors":"Shirin Rezazadeh ,&nbsp;Saeed Rastgoo Salami ,&nbsp;Mehran Hosseini ,&nbsp;Henrik Oster ,&nbsp;Mohammad Reza Saebipour ,&nbsp;Mohammad Mehdi Hassanzadeh-Taheri ,&nbsp;Hamed Shoorei","doi":"10.1016/j.nbscr.2024.100109","DOIUrl":null,"url":null,"abstract":"<div><div>Sleep is a vital biological function that significantly influences overall health. While sleep deprivation (SD) and circadian rhythm disruption are known to negatively impact various organs, their specific effects on kidney function remain understudied. This study aimed to investigate the impact of chronic partial sleep deprivation and circadian rhythm disruption on renal function in rats, providing insights into the relationship between sleep disturbances and kidney health. A total of 40 male Wistar rats were divided into five groups: a control group, a group with circadian rhythm disruption (CIR), a group with sleep deprivation during the light phase (SD-AM), a group with sleep deprivation during the dark phase (SD-PM), and a group with combined sleep deprivation and circadian rhythm disruption (SD-CIR). Sleep deprivation was induced using a specialized machine, depriving rats of sleep for 4 h daily, while circadian rhythm disruption was achieved through a 3.5-h light/dark cycle. After four weeks, kidney tissues and blood samples were collected for histological and biochemical analyses. The results showed that all experimental groups exhibited reduced water intake, with the CIR and SD-CIR groups also showing significantly lower food intake and reduced weight gain compared to controls. Oxidative stress markers revealed increased serum malondialdehyde (MDA) levels in the SD-PM and SD-CIR groups. Despite these metabolic and oxidative changes, histological examination of the kidneys revealed no significant alterations in renal structure or function across the groups. This study highlights the negative effects of chronic partial sleep deprivation and circadian rhythm disruption on feeding behavior, weight gain, and oxidative stress in rats. However, these interventions did not significantly alter renal structure or function. Further research is needed to explore the physiological mechanisms underlying these findings and the potential long-term effects of sleep disturbances on kidney health.</div></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"18 ","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664416/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the resilience of kidneys in rats exposed to chronic partial sleep deprivation and circadian rhythm disruption as disruptive interventions\",\"authors\":\"Shirin Rezazadeh ,&nbsp;Saeed Rastgoo Salami ,&nbsp;Mehran Hosseini ,&nbsp;Henrik Oster ,&nbsp;Mohammad Reza Saebipour ,&nbsp;Mohammad Mehdi Hassanzadeh-Taheri ,&nbsp;Hamed Shoorei\",\"doi\":\"10.1016/j.nbscr.2024.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sleep is a vital biological function that significantly influences overall health. While sleep deprivation (SD) and circadian rhythm disruption are known to negatively impact various organs, their specific effects on kidney function remain understudied. This study aimed to investigate the impact of chronic partial sleep deprivation and circadian rhythm disruption on renal function in rats, providing insights into the relationship between sleep disturbances and kidney health. A total of 40 male Wistar rats were divided into five groups: a control group, a group with circadian rhythm disruption (CIR), a group with sleep deprivation during the light phase (SD-AM), a group with sleep deprivation during the dark phase (SD-PM), and a group with combined sleep deprivation and circadian rhythm disruption (SD-CIR). Sleep deprivation was induced using a specialized machine, depriving rats of sleep for 4 h daily, while circadian rhythm disruption was achieved through a 3.5-h light/dark cycle. After four weeks, kidney tissues and blood samples were collected for histological and biochemical analyses. The results showed that all experimental groups exhibited reduced water intake, with the CIR and SD-CIR groups also showing significantly lower food intake and reduced weight gain compared to controls. Oxidative stress markers revealed increased serum malondialdehyde (MDA) levels in the SD-PM and SD-CIR groups. Despite these metabolic and oxidative changes, histological examination of the kidneys revealed no significant alterations in renal structure or function across the groups. This study highlights the negative effects of chronic partial sleep deprivation and circadian rhythm disruption on feeding behavior, weight gain, and oxidative stress in rats. However, these interventions did not significantly alter renal structure or function. Further research is needed to explore the physiological mechanisms underlying these findings and the potential long-term effects of sleep disturbances on kidney health.</div></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"18 \",\"pages\":\"Article 100109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994424000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994424000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

睡眠是一项重要的生物功能,对整体健康有重大影响。虽然睡眠剥夺(SD)和昼夜节律中断已知会对各种器官产生负面影响,但它们对肾功能的具体影响仍未得到充分研究。本研究旨在探讨慢性部分睡眠剥夺和昼夜节律中断对大鼠肾功能的影响,为睡眠障碍与肾脏健康之间的关系提供见解。将40只雄性Wistar大鼠分为5组:对照组、昼夜节律中断组(CIR)、白昼期睡眠剥夺组(SD-AM)、黑夜期睡眠剥夺组(SD-PM)和睡眠剥夺和昼夜节律中断联合组(SD-CIR)。使用专门的机器诱导睡眠剥夺,每天剥夺大鼠4小时的睡眠,同时通过3.5小时的明暗循环来破坏昼夜节律。四周后,采集肾脏组织和血液样本进行组织学和生化分析。结果表明,与对照组相比,所有实验组的水摄入量都有所减少,其中CIR组和SD-CIR组的食物摄入量也显著降低,体重增加也有所减少。氧化应激标志物显示SD-PM和SD-CIR组血清丙二醛(MDA)水平升高。尽管有这些代谢和氧化变化,肾脏的组织学检查显示各组肾脏结构或功能没有明显改变。本研究强调了慢性部分睡眠剥夺和昼夜节律中断对大鼠摄食行为、体重增加和氧化应激的负面影响。然而,这些干预措施并没有显著改变肾脏结构或功能。需要进一步的研究来探索这些发现背后的生理机制以及睡眠障碍对肾脏健康的潜在长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the resilience of kidneys in rats exposed to chronic partial sleep deprivation and circadian rhythm disruption as disruptive interventions
Sleep is a vital biological function that significantly influences overall health. While sleep deprivation (SD) and circadian rhythm disruption are known to negatively impact various organs, their specific effects on kidney function remain understudied. This study aimed to investigate the impact of chronic partial sleep deprivation and circadian rhythm disruption on renal function in rats, providing insights into the relationship between sleep disturbances and kidney health. A total of 40 male Wistar rats were divided into five groups: a control group, a group with circadian rhythm disruption (CIR), a group with sleep deprivation during the light phase (SD-AM), a group with sleep deprivation during the dark phase (SD-PM), and a group with combined sleep deprivation and circadian rhythm disruption (SD-CIR). Sleep deprivation was induced using a specialized machine, depriving rats of sleep for 4 h daily, while circadian rhythm disruption was achieved through a 3.5-h light/dark cycle. After four weeks, kidney tissues and blood samples were collected for histological and biochemical analyses. The results showed that all experimental groups exhibited reduced water intake, with the CIR and SD-CIR groups also showing significantly lower food intake and reduced weight gain compared to controls. Oxidative stress markers revealed increased serum malondialdehyde (MDA) levels in the SD-PM and SD-CIR groups. Despite these metabolic and oxidative changes, histological examination of the kidneys revealed no significant alterations in renal structure or function across the groups. This study highlights the negative effects of chronic partial sleep deprivation and circadian rhythm disruption on feeding behavior, weight gain, and oxidative stress in rats. However, these interventions did not significantly alter renal structure or function. Further research is needed to explore the physiological mechanisms underlying these findings and the potential long-term effects of sleep disturbances on kidney health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Sleep and Circadian Rhythms
Neurobiology of Sleep and Circadian Rhythms Neuroscience-Behavioral Neuroscience
CiteScore
4.50
自引率
0.00%
发文量
9
审稿时长
69 days
期刊介绍: Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.
期刊最新文献
Multiple oscillators underlie circadian food anticipation in mice Association of restless legs syndrome and obesity: A sub-population of the MASHAD cohort study Mutual coupling of neurons in the circadian master clock: What we can learn from fruit flies Age-related disturbances in rest-activity rhythms and integrity of the hippocampal network: An exploratory study Beyond sleep: Rest and activity rhythm as a marker of preclinical and mild dementia in older adults with less education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1